• Title/Summary/Keyword: matrix/binder structure

Search Result 14, Processing Time 0.023 seconds

Synthesis of Fluorene-containing Photosensitive Polymer and Its Application to the Carbon Black-based Photoresist for LCD Color-Filter (Fluorene 단위 구조를 함유한 감광성 고분자의 합성 및 LCD 컬러필터용 카본블랙 포토레지스트로의 응용)

  • Kim, Joo-Sung;Park, Kyung-Je;Lee, Dong-Guen;Bae, Jin-Young
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.87-93
    • /
    • 2011
  • We developed a fluorene-containing multifunctional binder polymer for LCD color filter resist, and employing the binder polymer, carbon black based black photoresist (CBR) was prepared in order to apply it to the black matrix (BM). To obtain the multifunction of the binder polymer, we synthesized bisphenol fluorene epoxy acrylate-containing unsaturated polyester and identified the binder polymer structure with $^1H$ NMR, GPC and FTIR. The corresponding BFEA-polyester binder polymer was compared with the commercially available acryl binder toward the application to the CBR. From the BM lithography test, we found that the synthesized BFEA-polyester binder had better photocrosslinking capability and alkali solubility. In addition, the newly developed binder gave a good process margin, good resolution and adhesion property on a glass substrate.

Preparation and Characteristic of Carbon/Carbon Composites with Coal-tar and Petroleum Binder Pitches (석탄계 및 석유계 피치가 함침된 탄소/탄소 복합재료 제조 및 특성)

  • Yang, Jae-Yeon;Park, Sang-Hee;Park, Soo-Jin;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.406-412
    • /
    • 2015
  • Unidirectional carbon/carbon (C/C) composites were manufactured using phenolic resins as a precursor of the carbonized matrix throughout a one-step manufacturing process. Also, molybdenum oxide ($MoO_3$) and binder pitches were impregnated with phenolic resins to improve the bulk density and mechanical property of the C/C composites. In this study, the influence of $MoO_3$ and binder pitches on mechanical properties of the C/C composites were investigated by measuring flexural strength (${\sigma}_f$) and interlaminar shear strength (ILSS). The results show that the enhancement of interfacial adhesions between the fibers and matrix resins of the C/C composites with $MoO_3$ and binder pitches which led to the improvement of mechanical properties of the C/C composites. This indicates that the presence of $MoO_3$ and binder pitches in C/C composites can develop the graphite structure and increase the bulk density.

Characterization of alkali activated geopolymer mortar doped with MWCNT

  • Khater, H.M.;Abd el Gawaad, H.A.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.45-60
    • /
    • 2015
  • This paper aimed to investigate the effect of MWCNTs on properties of slag Geopolymeric mortar. Geopolymeric matrices containing different MWCNTs concentrations (0.0, 0.1, 0.2, 0.3 and 0.4 % by weight of the used binder) were synthesized. The Geopolymer mortar composed of aluminosilicate slag to sand (1:2), while the alumino silicate source binder composed of 50% air cooled slag and 50%water cooled slag both passing a sieve of $90{\mu}m$, while the sand passing a sieve of 1 ml. The materials prepared at water/binder ratios in a range of 0.34-0.39% depending on the added MWCNT, whereas the Gelenium Ace-30 superplasticizer used in the ratio of 1.4-2.2% from the total dry weight for better dispersion of MWCNT under sonication for 15 min. Alkaline activation of the Geopolymer mortar was carried by using of 6% NaOH. Curing was performed under temperature of $40^{\circ}C$ and 100% R.H. Results showed that the addition of MWCNTs enhanced the resulting amorphous geopolymer structure with marked decrease in the drying shrinkage as well as water absorption specially when using 0.1% MWCNT, while further increase in MWCNTs results in agglomeration in MWCNT within the matrix and so hinder the propagation of Geopolymerization reaction and negatively affect the formed geopolymer structure.

An Experimental Study on Mechanic properties of Hardened Fly-ash (플라이애쉬 경화체의 역학적 특성에 관한 실험적 연구)

  • Jo, Byung-Wan;Kim, Yeung-Jin;Park, Jong-Bin
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.134-138
    • /
    • 2003
  • The purpose of this paper is to recycle the fly ash to the valuable resources and settle environment problems which was caused by the fly ash produced from the thermal power plant. Making the fly ash-cement matrix reused fly ash in large quantities, we looked into minutely the physical properties - the elastic modulus, the compressive strength - to increase the usefulness as the building materials for the structure widely. In this paper, the variables are the water-binder(39, 42, 45%), the fine aggregate ratio(37, 41, 45%). Because the fracture energy is influenced by the strength, it is showed to decrease with the increase of W/B and S/a. Besides, we will be able to know that basic properties of the fly ash-cement matrix are similar to that of concrete. But, it is needed to carry out durability experiment on the drying shrinkage, creep, freezing and thawing test to use structural materials.

  • PDF

Fabrication of Macro-porous Carbon Foams from Spherical Phenolic Resin Powder and Furfuryl Alcohol by Casting Molding (구상 페놀수지 분말과 푸르프릴 알코올로부터 주형성형에 의한 매크로 다공성 카본 폼의 제조)

  • Jeong, Hyeondeok;Kim, Seiki
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.502-507
    • /
    • 2019
  • Macro-porous carbon foams are fabricated using cured spherical phenolic resin particles as a matrix and furfuryl alcohol as a binder through a simple casting molding. Different sizes of the phenolic resin particles from 100-450 ㎛ are used to control the pore size and structure. Ethylene glycol is additionally added as a pore-forming agent and oxalic acid is used as an initiator for polymerization of furfuryl alcohol. The polymerization is performed in two steps; at 80℃ and 200℃ in an ambient atmosphere. The carbonization of the cured body is performed under Nitrogen gas flow (0.8 L/min) at 800℃ for 1 h. Shrinkage rate and residual carbon content are measured by size and weight change after carbonization. The pore structures are observed by both electron and optical microscope and compared with the porosity results achieved by the Archimedes method. The porosity is similar regardless of the size of the phenolic resin particles. On the other hand, the pore size increases in proportion to the phenol resin size, which indicates that the pore structure can be controlled by changing the raw material particle size.

Fabrication and Electro-photolysis Property of Carbon Nanotubes/Titanium Composite Photocatalysts for Methylene Blue

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1798-1804
    • /
    • 2009
  • In this study, we have studied on improved performance of carbon nanotubes/titanium (CNT/TiO2) structure electrode for methylene blue (MB). The composite electrodes consisting of CNTs and a titanium oxide matrix with phenol resin binder was fabricated with a mixture method. The chemical and morphological structure of CNT/Ti$O_2$ composites were characterized by means of BET surface area, X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis absorption technique, Raman spectroscopy and energy dispersive X-ray (EDX). The electrode showed a remarkably enhanced performance for MB oxidation under UV illumination with or without electro-chemical reaction (ECR). Such a remarkably improved performance of the CNT/Ti$O_2$ structure electrode might be due to the enhanced MB oxidation by electro- and photo-generated electrons and holes in the CNTs and Ti$O_2$ under UV illumination with or without ECR.

Fabrication of Composite Filler Metal by Melt Infiltration (용탕 침투법을 이용한 복합 삽입 금속의 제조)

  • Park, Heung-Il;Kim, Ji-Tae;Kim, Woo-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.244-250
    • /
    • 2003
  • The aim of this study is fabricating of composite filler metal (CFM) by a combination of selective laser sintering (SLS) of stainless steel powders (RapidSteel $2.0^{TM}$ and liquid phase infiltration of Ag-28 wt.%Cu alloy. Porous stainless steel body with inter-connected pore channels was fabricated by SLS, binder decomposing and densification processes. By the direct contact infiltration, the narrow inter-particle channels of the porous body were completely filled with the Ag-28 wt.%Cu alloy infiltrant. During infiltration, the dissolved elements of Fe, Ni and Cr from the porous body were solved into copper solid solution phases, which consist of eutectic structure of composite metal matrix. The S10C/CFM/S10C joints, which have narrow clearance gaps between them up to 10 micrometers, were joined successfully by self-feeding of filler metal from the matrix of CFM. The CFM kept its original thickness and microstructure after brazing. The tensile strength of brazed specimen was higher than 30 kgf/$mm^2$ and showed a typical ductile fracture mode in the CFM.

Evaluation of Apparent Chloride Diffusivity of Types of Concretes (콘크리트 종류별 겉보기 염소이온 확산특성 평가)

  • 문한영;김홍삼;최두선;이승훈;손유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.74-77
    • /
    • 2003
  • This paper investigated the apparent chloride diffusivity of various concretes. Ten mixtures of concrete were initially prepared and tested to estimate diffusion property. The penetration depth and concentration of chloride ion were examined at the same water-binder ration. The binders were composed of normal portland cement, fly ash, ground granulated blast-furnace slag, and silica fume. From the results, it was concluded that using the mineral admixtures had a filling effect on the pore structure of cements matrix due to those pozzoanic reaction with the hydrates of cement, which increases the tortuosity of pore and makes large pore finer. And diffusivity of chloride is following: NPC100 > F10N90 > F30N70 > F20N80 > F20S05 > G30N70 > F10S05 > G30S05 > G30F15 > G50N50.

  • PDF

Preparation of Si/C Anode with PVA Nanocomposite for Lithium-ion Battery Using Electrospinning Method

  • Choi, Sung Il;Lee, Ye Min;Jeong, Hui Cheol;Jung, Eun-Jin;Lee, Mi Sun;Kim, Jinyoung;Kim, Yong Ha;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.139-142
    • /
    • 2018
  • Silicon (Si) is a promising anode material for next-generation lithium ion batteries (LIBs) because of its high capacity of 4,200 mAh/g ($Li_{4.4}Si$ phase). However, the large volume expansion of Si during lithiation leads to electrical failure of electrode and rapid capacity decrease. Generally, a binder is homogeneously mixed with active materials to maintain electrical contact, so that Si needs a particular binding system due to its large volume expansion. Polyvinyl alcohol (PVA) is known to form a hydrogen bond with partially hydrolyzed silicon oxide layer on Si nanoparticles. However, the decrease of its cohesiveness followed by the repeated volume change of Si still remains unsolved. To overcome this problem, we have introduced the electrospinning method to weave active materials in a stable nanofibrous PVA structure, where stresses from the large volume change of Si can be contained. We have confirmed that the capacity retention of Si-based LIBs using electrospun PVA matrix is higher compared to the conservative method (only dissolving in the slurry); the $25^{th}$ cycle capacity retention ratio based on the $2^{nd}$ cycle was 37% for the electrode with electrospun PVA matrix, compared to 27% and 8% for the electrodes with PVdF and PVA binders.

Resistance to Sulfate Attack of Concrete Containing LCD glass powder Using Industrial By-products (산업부산물을 활용한 LCD 유리 미분말 혼입 콘크리트의 황산염침식 저항성)

  • Kim, Seong-Kyum;Song, Jae-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2019
  • Purpose: This study aims to enhance the resistance against sulfate attack compared to ordinary Portland cement (OPC) concrete by using liquid crystal display (LCD) as binder. Method: The fundamental properties including compressive strength and porosity of concrete replaced by LCD up to 15% at increments of 5% and in turn, the weight, volume, and strength loss of LCD-mixed concrete was analyzed. Results: For the concrete substituted by 5% of LCD, it showed the highest compressive strength at 28 days of curing, and particular at immersion of $Na_2SO_4$ solution, it was achieved the lowest loss of weight, volume and strength due to an decreased porosity at capillaries. In contrast, there is no distinct difference of the sulfate attack resistance between LCD-mixed concretes under exposure of $MgSO_4$ solution, excepted for OPC concrete. Conclusion: In this study, comparison of resistance to sulfate attack between LCD-mixed concretes, and it would be proposed the possibility of LCD usage as binder through long-term verification with extended replacement ratio and identification of changes of hydrates in the cement matrix.