• Title/Summary/Keyword: mathematical-gifted student

Search Result 67, Processing Time 0.019 seconds

Activity-Theoretical Analysis on the Relation of Small Group Activity on Gifted Elementary Student's Concept Formation of Prime and Composite Numbers (소집단 활동체계와 초등영재의 소수와 합성수 개념 형성 사이의 관계 분석)

  • Kang, Young Ran;Kim, Jin Hwan
    • School Mathematics
    • /
    • v.16 no.3
    • /
    • pp.613-631
    • /
    • 2014
  • The aim of this study was to investigate how the small group activity system influences individual to form concepts of prime number and composite number through activity theory on learning process of mathematically gifted 5th-grade students. Student's worksheets, recorded video, and interview were gathered and transcribed for analyzing data. Process of concept formation and using symbol behavior were used to derive the stage of mathematical concept from students, and the activity system and stage of concept formation process were schematized through analysis of whole class activity system and small group activity system based on activity theory. According to the results of this study, two students who were in different activity groups separated into the state of semi-concept and the stage of complex thinking respectively, and therefore, social context and the activity system had effects on process of concept formation among the students.

  • PDF

Analysis on Teacher's Discourse in Math Gifted Class in Elementary Schools Using Flanders Interaction Analysis Program (Flanders 언어상호작용분석 프로그램을 이용한 초등수학영재 수업에서의 교사 발언 사례 분석)

  • Kim, Mi-Hwan;Song, Sang-Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.2
    • /
    • pp.385-415
    • /
    • 2011
  • To investigate the more effective mathematical communication process, a recommended teacher and a selected class as an exemplary model was analyzed with Flanders system. The mathematical communicative level was examined to measure content level using the framework analysing the mathematical communicative level(Park & Pang) based on describing levels of math-talk learning community(Hufferd-Ackles). The purposes of this paper are to describe the verbal flow pattern between teacher and students in the elementary school class for mathematically gifted students, and to propose the effective communication model of math-talk with analysis of verbal teaching behavior in the active class. In addition the whole and the parts of the exemplary class sample is respectively analysed to be used practically by elementary school teachers. The results show the active communication process with higher level presents a pattern 'Ask Question${\rightarrow}$Activity (Silence, Confusion or work)${\rightarrow}$Student-Initiated Talk${\rightarrow}$Activity (Silence, Confusion or work), and the teacher's verbal behavior promoting math communication actively is exhibited by indirect influence especially accepting or using ideas.

  • PDF

A study about the Leikin's method of measuring mathematical creativity (Leikin의 수학적 창의성 측정 방법에 대한 고찰)

  • Ha, Su Hyun;Lee, Kwangho
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.83-103
    • /
    • 2014
  • The purpose of this paper is to find a method of measuring mathematical creativity reasonably. In the pursuit of this purpose, we designed four multiple solution tasks that consist of two kinds of open tasks; 'tasks with open solutions' and 'tasks with open answers'. We collected data by conducting an interview with a gifted fifth grade student using the four multiple solution tasks we designed and analyzed mathematical creativity of the student using Leikin's model(2009). Research results show that the mathematical creativity scores of two students who suggest the same solutions in a different order may vary. The more solutions a student suggests, the better score he/she gets. And fluency has a stronger influence on mathematical creativity than flexibility or originality of an idea. Leikin's model does not consider the usefulness nor the elaboration of an idea. Leikin's model is very dependent on the tasks and the mathematical creativity score also varies with each marker.

  • PDF

Development of Mathematics Class Model in Gifted Science Academy (과학영재학교 수학 수업모형 개발)

  • Oh, Taek-Keun
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.4
    • /
    • pp.657-677
    • /
    • 2014
  • Considering the expansion of gifted education and the quantitative increase the Gifted Science Academy, it is important to seek the appropriate methods of mathematics teaching for gifted high school students. In particular, to reflect current trends in mathematics education that the mathematical creativity is being presented as an important educational goal, Now is the time we need student-centered discussion model for regular mathematics classes, not teacher-centered instruction in the way of knowledge transfer. In this study, class model of preparation-based discussion was designed and applied to the regular mathematics classes for the Science Academy. Students participating in this research had a lot of pressure in preparation activities for discussion, but they said that the discussion compared to traditional lecture was mathematically meaningful experience. These findings suggest the implication that class model of preparation-based discussion can be meaningfully applied to the regular mathematics class.

Differences among Sciences and Mathematics Gifted Students: Multiple Intelligence, Self-regulated Learning Ability, and Personal Traits (과학·수학 영재의 다중지능, 자기조절학습능력 및 개인성향의 차이)

  • Park, Mijin;Seo, Hae-Ae;Kim, Donghwa;Kim, Jina;Nam, Jeonghee;Lee, Sangwon;Kim, Sujin
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.5
    • /
    • pp.697-713
    • /
    • 2013
  • The research aimed to investigate characteristics of middle school students enrolled in a science gifted education center affiliated with university in terms of multiple intelligence, self-regulated learning and personality traits. The 89 subjects in the study responded to questionnaires of multiple intelligence, self-regulated learning ability and a personality trait in October, 2011. It was found that both science and math gifted students presented intrapersonal intelligence as strength and logical-mathematical intelligence as weakness. While physics and earth science gifted ones showed spatial intelligence as strength, chemistry and biology gifted ones did intrapersonal intelligence. For self-regulated learning ability, both science and mathematics gifted students tend to show higher levels than general students, in particular, cognitive and motivation strategies comparatively higher than meta-cognition and environment condition strategies. Characteristics of personal traits widely distributed across science and mathematics gifted students, showing that each gifted student presented distinct characteristics individually. Those gifted students showing certain intelligence such as spatial, intrapersonal, or natural intelligences as strength also showed different characteristics of self-regulated learning ability and personal traits among students showing same intelligence as strength. It was concluded that science and mathematics gifted students showed various characteristics of multiple intelligences, self-regulated learning ability, and personal traits across science and mathematics areas.

A study on the improvement of ability of a creative solving mathematical problem (수학문제의 창의적 해결력 신장에 관한 연구 -농어촌 중학교 수학영재를 중심으로-)

  • 박형빈;서경식
    • Journal of the Korean School Mathematics Society
    • /
    • v.6 no.1
    • /
    • pp.1-17
    • /
    • 2003
  • In this paper, we study the methods of improving an ability of a creative solving mathematical problem belonging to an educational system which every province office of education has adopted for the mathematically talented students. Especially, we give an attention on a preferential reaction in teaching styles according to student's LQ., the relationship between student's LQ. and an ability of creative solving mathematical problems, and seeking for an appropriative teaching methods of the improvement ability of a creative solving problem. As results, we have the followings; 1. The group having excellent students who have a higher intelligential ability prefers inquiry learning which is composed of several sub-groups to a teacher-centered instruction. 2. The correlation coefficient between student's LQ. and an ability creative solving of mathematical is not high. 3. Although the contents and the model of thematic inquiry learning don't have a great influence on the divergent thinking (ex. fluency, flexibility, originality), they affect greatly the convergent thinking - a creative mathematical - problem solving ability. Accordingly, our results show that we should use a variety of mathematical teaching materials apart from our regular textbooks used in schools to improve a creative mathematical problem solving ability in the process of thematic inquiry learning. Also we can see that an inquiry learning which stimulates student's participation and discussion can be a desirable model in the thematic mathematical classroom activities.

  • PDF

Schemes to incorporate key competencies for the gifted in the middle school math teaching (핵심역량에 기초한 중학교 수학 수업 방안 탐색 -수학 영재 수업을 중심으로-)

  • Choe, Seong Hyun;Park, Ji Hyun;Nam, Geum Cheon
    • Communications of Mathematical Education
    • /
    • v.27 no.2
    • /
    • pp.99-119
    • /
    • 2013
  • This study investigated the schemes to apply key competencies to middle school math teaching. Key competencies (KCs, hereafter), however, have been discussed only at the national-level general curriculum. Through the survey with mathematics educators, we selected key competencies that can be better developed through mathematics subject. We investigate ways to apply key competencies into math teaching and learning with the math-talented students who usually lack interpersonal skills and communication skills. Along with KC goals, we selected graphs (or graphing skills in math contents) as learning goals, and we designed and implemented competency-based instruction for the gifted. Through participant observation of math teaching and learning, we identified students' improvement in interpersonal skills and communication skills. We also identified students' skill development in other key competencies such as creativity, problem solving, information processing skills, etc., which can be developed through mathematics teaching and learning. Through this study, we found out that key competencies can be developed through mathematics teaching and we need in-depth studies on this matter.

The Development and Application of Girih tiling Program for the Math-Gifted Student in Elementary School (Girih 타일링을 이용한 초등수학영재 프로그램 개발 및 적용 연구)

  • Park, Hye-Jeong;Cho, Young-Mi
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.3
    • /
    • pp.619-637
    • /
    • 2012
  • The purpose of this study is to develop a new program for elementary math-gifted students by using 'Girih Tililng' and apply it to the elementary students to improve their math-ability. Girih Tililng is well known for 'the secrets of mathematics hidden in Mosque decoration' with lots of recent attention from the world. The process of this study is as follows; (1) Reference research has been done for various tiling theories and the theories have been utilized for making this study applicable. (2) The characteristic features of Mosque tiles and their basic structures have been analyzed. After logical examination of the patterns, their mathematic attributes have been found out. (3) After development of Girih tiling program, the program has been applied to math-gifted students and the program has been modified and complemented. This program which has been developed for math-gifted students is called 'Exploring the Secrets of Girih Hidden in Mosque Patterns'. The program was based on the Renzulli's three-part in-depth learning. The first part of the in-depth learning activity, as a research stage, is designed to examine Islamic patterns in various ways and get the gifted students to understand and have them motivated to learn the concept of the tiling, understanding the characteristics of Islamic patterns, investigating Islamic design, and experiencing the Girih tiles. The second part of the in-depth learning activity, as a discovery stage, is focused on investigating the mathematical features of the Girih tile, comparing Girih tiled patterns with non-Girih tiled ones, investigating the mathematical characteristics of the five Girih tiles, and filling out the blank of Islamic patterns. The third part of the in-depth learning activity, as an inquiry or a creative stage, is planned to show the students' mathematical creativity by thinking over different types of Girih tiling, making the students' own tile patterns, presenting artifacts and reflecting over production process. This program was applied to 6 students who were enrolled in an unified(math and science) gifted class of D elementary school in Daejeon. After analyzing the results produced by its application, the program was modified and complemented repeatedly. It is expected that this program and its materials used in this study will guide a direction of how to develop methodical materials for math-gifted education in elementary schools. This program is originally developed for gifted education in elementary schools, but for further study, it is hoped that this study and the program will be also utilized in the field of math-gifted or unified gifted education in secondary schools in connection with 'Penrose Tiling' or material of 'quasi-crystal'.

A Study on the Qualitative Differences Analysis between Multiple Solutions in Terms of Mathematical Creativity (수학적 창의성 관점에서 다중해법 간의 질적 차이 분석)

  • Baek, Dong-Hyeon;Lee, Kyeong-Hwa
    • School Mathematics
    • /
    • v.19 no.3
    • /
    • pp.481-494
    • /
    • 2017
  • Tasks of multiple solutions have been said to be suitable for the cultivation of mathematical creativity. However, studies on the fact that multiple solutions presented by students are useful or meaningful, and students' thoughts while finding multiple solutions are very short. In this study, we set goals to confirm the qualitative differences among the multiple solutions presented by the students and, if present, from the viewpoint of mathematical creativity. For this reason, after presenting the set of tasks of the two versions to eight mathematically gifted students of the second-grade middle school, we analyzed qualitative differences that appeared among the solutions. In the study, there was a difference among the solution presented first and the solutions presented later, and qualitatively substantial differences in terms of flexibility and creativity. In this regard, it was concluded that the need to account for such qualitative differences in designing and applying multiple solutions should be considered.

A Study on Tetrahedron's Properties related with Center of Inscribed Sphere Using the Center of Mass (무게중심을 이용한 사면체 내접구의 중심에 관련된 성질 탐구)

  • Han, In-Ki
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.145-158
    • /
    • 2010
  • In this paper we study tetrahedron's properties related with center of inscribed sphere using the center of mass. We show that the center of mass of four mass points (A,a), (B,b), (C,c), (D,d) coincide with center of tetrahedron's inscribed sphere, suggest equalities and inequalities related with center of inscribed sphere, and prove theses using the center of mass. Our results can be used in research and education programs, various types of gifted student education.