• 제목/요약/키워드: mathematical structure

Search Result 1,880, Processing Time 0.031 seconds

Thermal Design of Electronic for Controlling X-band Antenna of Compact Advanced Satellite (차세대 중형위성 탑재 X-밴드 안테나 구동용 전자유닛 APD 열설계 및 열해석)

  • Kim, Hye-In;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • The APD (Antenna Pointing Driver) is an electronic equipment tool that is used to drive the two-axis gimbal-type antenna for the image data transmission of CAS (Compact Advanced Satellite). In this study, a heat dissipation of EEE (Electrical, Electronic and Electromechanical) is reviewed, to identify the parts that directly affected its efficiency, lifetime as well as the reliability of the structure. This event eventually incurs a failure of the EEE part itself, or even the entire satellite system as noted in experiments in this case. To guarantee reliability of electronic equipment during the mission, the junction temperature of EEE parts is considered a significant and important design factor, and subsequently must be secured within the allowable range. Therefore, the notation of the thermal analysis considering the derating is indispensable, and a proper thermal mathematical model should be constructed for this case. In this study, the thermal design and thermal analysis are performed to confirm the temperature requirement of the APD. In addition, we noted that the validity of the thermal model, according to each of the identified modeling methods, was therefore compared through the thermal analysis utilized in this case.

A Study on the Meaning of Geometric Analysis of Gameun Temple's Taegeuk Shapes (감은사 태극문양의 기하학적 의미 연구)

  • Kim, Il-Hwan;Park, Tae-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.435-444
    • /
    • 2021
  • This paper discusses the geometrical interpretation of the Taegeuk Shapes of Kameun Temple through the geometric analysis of mathematics. Based on the literature, This paper attempted to clarify that the origin of Gameunsa's founding of the spirit of patriotism may coincide with historical records through historical literature and geometric meaning. First, the background of the founding of Kameun temple, geographical location located near the East Sea, especially the history of the ancient Chinese mathematics at the time, And that mathematical knowledge influenced all fields such as agriculture, architecture, and art. Secondly, it is related to the historical record as the space of about 60 centimeters, which is uniquely underground, was identified as the structure of the excavated space. It is thought that there is a strong correlation with the origin that the King Munmu changed into a dragon, and set up the temple to be able to stay. Based on these, the clues of the interpretation of the taegeuk and the triangular pattern were searched in the samcheon yanggi(參天兩地) of the Oriental and circumference of the Western. The taegeuk and triangular patterns represent the symbols of yin-yang harmony, which correspond to the origin of its creation. the Korean people regarded the mysterious dragon as a symbol of yinyang harmony. In conclusion the Shapes of Kameun temple's stone is consistent with the contents mentioned in the historical record.

Calculation of optimal design flood using cost-benefit analysis with uncertainty (불확실성이 고려된 비용-편익분석 기법을 도입한 최적설계홍수량 산정)

  • Kim, Sang Ug;Choi, Kwang Bae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.405-419
    • /
    • 2022
  • Flood frequency analysis commonly used to design the hydraulic structures to minimize flood damage includes uncertainty. Therefore, the most appropriate design flood within a uncertainty should be selected in the final stage of a hydraulic structure, but related studies were rarely carried out. The total expected cost function introduced into the flood frequency analysis is a new approach for determining the optimal design flood. This procedure has been used as UNCODE (UNcertainty COmpliant DEsign), but the application has not yet been introduced in South Korea. This study introduced the mathematical procedure of UNCODE and calculated the optimal design flood using the annual maximum inflow of hydroelectric dams located in the Bukhan River system and results were compared with that of the existing flood frequency. The parameter uncertainty was considered in the total expected cost function using the Gumbel and the GEV distribution, and the Metropolis-Hastings algorithm was used to sample the parameters. In this study, cost function and damage function were assumed to be a first-order linear function. It was found that the medians of the optimal design flood for 4 Hydroelectric dams, 2 probability distributions, and 2 return periods were calculated to be somewhat larger than the design flood by the existing flood frequency analysis. In the future, it is needed to develop the practical approximated procedure to UNCODE.

Estimation of Perceived Curve Radius Considering Visual Distortion at Curve Sections (곡선부 시각왜곡현상을 고려한 인지곡선반경 산정에 관한 연구)

  • Shin, Jae-Man;Park, Je-Jin;Son, Sang-Ho;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.395-402
    • /
    • 2010
  • The seriousness of a traffic accident appears relatively higher on the curve sections compared with the straight sections due to a change in speed caused by a change in the driver's sight. In particular, the visual distortion phenomenon, one of the dangerous factors taking place on the curve sections, appears different according to the road's geometric design. Although it is a genuinely principal design factor which should be necessarily considered in designing a road, the previous researches on establishing the design standards for it have been insufficiently conducted. As a result, the establishment of the road design standards for the curve sections considering the sight distortion phenomenon is desperately required. This research examined the previous researches on the driver's behaviors, the driver's sight characteristics and the perceived curve radius on the curve sections, and developed the theoretical model of perceived curve radius to which a mathematical technique is applied in consideration of the visual distortion phenomenon on the two-lane curve sections in a local area. In addition, after the theoretical visual distortion was calculated on the basis of the theoretical model of perceived curve radius, the range of error on the theoretical recognition radius model formula was verified through comparing it with the previous researches' experiential visual distortion level and analyzing both of them. As a result, it was observed that as the curve radius practically increases in the theoretical recognition curve radius, the range of error tends to go down, which reflects well the characteristics of the curve sections on the road. Based on this research, it is expected that this research will be helpful to eliminate the safety defects when designing the curve sections and contribute to develop the road design standards considering human factors in the future.

A study on the visual integrated model of the fractional division algorithm in the context of the inverse of a Cartesian product (카테시안 곱의 역 맥락에서 살펴본 분수 나눗셈 알고리즘의 시각적 통합모델에 대한 연구)

  • Lee, Kwangho;Park, Jungkyu
    • Education of Primary School Mathematics
    • /
    • v.27 no.1
    • /
    • pp.91-110
    • /
    • 2024
  • The purpose of this study is to explore visual models for deriving the fractional division algorithm, to see how students understand this integrated model, the rectangular partition model, when taught in elementary school classrooms, and how they structure relationships between fractional division situations. The conclusions obtained through this study are as follows. First, in order to remind the reason for multiplying the reciprocal of the divisor or the meaning of the reciprocal, it is necessary to explain the calculation process by interpreting the fraction division formula as the context of a measurement division or the context of the determination of a unit rate. Second, the rectangular partition model can complement the detour or inappropriate parts that appear in the existing model when interpreting the fraction division formula as the context of a measurement division, and can be said to be an appropriate model for deriving the standard algorithm from the problem of the context of the inverse of a Cartesian product. Third, in the context the inverse of a Cartesian product, the rectangular partition model can naturally reveal the calculation process in the context of a measurement division and the context of the determination of a unit rate, and can show why one division formula can have two interpretations, so it can be used as an integrated model.

Innovative Teaching Technologies as a Way to Increase Students' Competitiveness

  • Olena M. Galynska;Nataliia V. Shkoliar;Zoriana I. Dziubata;Svitlana V. Kravets;Nataliia S. Levchyk
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.157-169
    • /
    • 2024
  • The article presents an analysis of innovative teaching technologies as a way to increase students' competitiveness. The author found that innovative technologies in education are information and communication technologies relying on computer-based learning. The structure, content of educational software, organization of Web-space are important when using innovative teaching technologies in English classes. We conducted the study in several stages: comparative analysis, synthesis, classification and systematization of the results of psychological and pedagogical, educational and methodological research; study of legislative acts, periodicals in order to identify the state of the research issue, and determining the directions of its solution, as well as subject, goal and objectives of the study. We used modelling to create situations of foreign language professional communication of future IT specialists. Empirical methods involved questionnaires used for identifying the motives of professional development and determining the features of the educational activities of future IT specialists in the process of training. The methods of mathematical statistics allowed to scientifically describe and systematize the obtained data, to identify the quantitative relationship between the studied phenomena, to analyse and summarize the results. We conducted a socio-psychological study during 2016 - 2019. It involved 255 first- and fourth-year students of National Technical University of Ukraine "Igor Sikorsky Kyiv Poly-technic Institute." Innovative information and communication technologies that improve the educational and cognitive activity of students, as well as increase the level of their knowledge have become important in teaching a foreign language in higher educational institutions. These technologies include MOODLE - Modular Object-Oriented Dynamic Learning Environment, business game, integrated pedagogical technology, case study technology. Thus, the information-rich learning process in combination with the use of innovative technologies, well-organized e-learning, interactive training courses, multimedia tools improves the program of teaching and learning foreign languages in general, and English in particular, improves the level of knowledge of future IT specialists and motivation to study and learn foreign languages, allows students to use a variety of authentic materials. We state that all these factors influence the process of individualization of learning and contribute to the successful mastery of a foreign language.

Implementation of Markerless Augmented Reality with Deformable Object Simulation (변형물체 시뮬레이션을 활용한 비 마커기반 증강현실 시스템 구현)

  • Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.35-42
    • /
    • 2016
  • Recently many researches have been focused on the use of the markerless augmented reality system using face, foot, and hand of user's body to alleviate many disadvantages of the marker based augmented reality system. In addition, most existing augmented reality systems have been utilized rigid objects since they just desire to insert and to basic interaction with virtual object in the augmented reality system. In this paper, unlike restricted marker based augmented reality system with rigid objects that is based in display, we designed and implemented the markerless augmented reality system using deformable objects to apply various fields for interactive situations with a user. Generally, deformable objects can be implemented with mass-spring modeling and the finite element modeling. Mass-spring model can provide a real time simulation and finite element model can achieve more accurate simulation result in physical and mathematical view. In this paper, the proposed markerless augmented reality system utilize the mass-spring model using tetraheadron structure to provide real-time simulation result. To provide plausible simulated interaction result with deformable objects, the proposed method detects and tracks users hand with Kinect SDK and calculates the external force which is applied to the object on hand based on the position change of hand. Based on these force, 4th order Runge-Kutta Integration is applied to compute the next position of the deformable object. In addition, to prevent the generation of excessive external force by hand movement that can provide the natural behavior of deformable object, we set up the threshold value and applied this value when the hand movement is over this threshold. Each experimental test has been repeated 5 times and we analyzed the experimental result based on the computational cost of simulation. We believe that the proposed markerless augmented reality system with deformable objects can overcome the weakness of traditional marker based augmented reality system with rigid object that are not suitable to apply to other various fields including healthcare and education area.

A Study on the Installation of Groyne using Critical Movement Velocity and Limiting Tractive Force (이동한계유속과 한계소류력을 활용한 수제 설치에 관한 연구)

  • Kim, Yeong Sik;Park, Shang Ho;An, Ik Tae;Choo, Yeon Moon
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.194-199
    • /
    • 2020
  • Unlike in the past, the world is facing water shortages due to climate change and difficulties in simultaneously managing the risks of flooding. The Four Major Rivers project was carried out with the aim of realizing a powerful nation of water by managing water resources and fostering the water industry, and the construction period was relatively short compared to the unprecedented scale. Therefore, the prediction and analysis of how the river environment changes after the Four Major Rivers Project is insufficient. Currently, part of the construction section of the Four Major Rivers Project is caused by repeated erosion and sedimentation due to the effects of sandification caused by large dredging and flood-time reservoirs, and the head erosion of the tributaries occurs. In order to solve these problems, the riverbed maintenance work was installed, but it resulted in erosion of both sides of the river and the development of new approaches and techniques to keep the river bed stable, such as erosion and excessive sedimentation, is required. The water agent plays a role of securing a certain depth of water for the main stream by concentrating the flow so much in the center and preventing levee erosion by controlling the flow direction and flow velocity. In addition, Groyne products provide various ecological environments by forming a natural form of riverbeds by inducing local erosion and deposition in addition to the protection functions of the river bank and embankment. Therefore, after reviewing the method of determining the shape of the Groyne structure currently in use by utilizing the mobile limit flow rate and marginal reflux force, a new Critical Movement Velocity(${\bar{U}}_d$) and a new resistance coefficient formula considering the mathematical factors applicable to the actual domestic stream were developed and the measures applicable to Groyne installation were proposed.

A Strategic Approach to Competitiveness of ASEAN's Container Ports in International Logistics (국제물류전략에 있어서 ASEAN의 컨데이너항만 경쟁력에 관한 연구)

  • 김진구;이종인
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.273-280
    • /
    • 2003
  • The purpose of this study is to identify and evaluate the competitiveness of ports in ASEAN(Association of Southeast Asian Nations), which plays a leading role in basing the hub of international logistics strategies as a countermeasure in changes of international logistics environments. This region represents most severe competition among Mega hub ports in the world in terms of container cargo throughput at the onset of the 21 st century. The research method in this study accounted for overlapping between attributes, and introduced the HFP method that can perform mathematical operations. The scope of this study was strictly confined to the ports of ASEAN. which cover the top 100 of 350 container ports that were presented in Containerization International Yearbook 2002 with reference to container throughput. The results of this study show Singapore in the number one position. Even compared with major ports in Korea (after getting comparative ratings and applying the same data and evaluation structure), the number one position still goes to Singapore and then Busan(2) and Manila(2), followed by Port Klang(4), Tanjugn Priok(5), Tanjung Perak(6), Bangkok(7), Inchon(8), Laem Chabang(9) and Penang(9). In terms of the main contributions of this study, it is the first empirical study to apply the combined attributes of detailed and representative attributes into the advanced HFP model which was enhanced by the KJ method to evaluate the port competitiveness in ASEAN. Up-to-now, none have comprehensively conducted researches with sophisticated port methodology that has discussed a variety of changes in port development and terminal transfers of major shipping lines. Moreover, through the comparative evaluation between major ports in Korea and ASEAN, the presentation of comparative competitiveness for Korea ports is a great achievement in this study. In order to reinforce this study, it needs further compensative research, including cost factors which could not be applied to modeling the subject ports by lack of consistently qualified in ASEAN.

  • PDF

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.