• Title/Summary/Keyword: mathematical problem solving

Search Result 1,002, Processing Time 0.028 seconds

A Study on the Development of Open-Ended Tasks and Assessment Rubrics for Elementary School Mathematics (초등수학 서술형 수행평가 문항 및 평가기준 개발 연구)

  • Cho, Mi-Kyung
    • The Mathematical Education
    • /
    • v.46 no.2 s.117
    • /
    • pp.207-226
    • /
    • 2007
  • The purpose of this study was to design and develop the processes of tasks and assessment rubrics of open-ended tasks, and those for the 5th graders of elementary school mathematics. 7 tasks were finally developed, and 'problem understanding', 'problem solving process', 'communication' were selected as the criteria for assessment rubrics. The result was that the ability of mathematical power covering problem understanding ability, problem solving ability and mathematical communication ability was low. Specifically, problem understanding ability was the highest, problem solving ability was middle, and mathematical communication ability was the lowest.

  • PDF

유연한 수학적 사고에 의한 개념의 동치성 비교 - 사례 연구 -

  • Lee, Byung-Soo
    • East Asian mathematical journal
    • /
    • v.27 no.4
    • /
    • pp.381-389
    • /
    • 2011
  • The flexible mathematical thinking - the ability to generate and connect various representations of concepts - is useful in understanding mathematical structure and variation in problem solving. In particular, the flexible mathematical thinking with the inventive mathematical thinking, the original mathematical problem solving ability and the mathematical invention is a core concept, which must be emphasized in all branches of mathematical education. In this paper, the author considered a case of flexible mathematical thinking with an inventive problem solving ability shown by his student via real analysis courses. The case is on the proofs of the equivalences of three different definitions on the concept of limit superior shown in three different real analysis books. Proving the equivalences of the three definitions, the student tried to keep the flexible mathematical thinking steadily.

The Impact of Dynamic Geometry Software on High School Students' Problem Solving of the Conic Sections (동적기하가 원뿔곡선 문제 해결에 미치는 영향)

  • Hong, Seong-Kowan;Park, Cheol-Ho
    • The Mathematical Education
    • /
    • v.46 no.3
    • /
    • pp.331-349
    • /
    • 2007
  • This study aims to improve the teaching and learning method on the conic sections. To do that the researcher analyzed the impact of dynamic geometry software on students' problem solving of the conic sections. Students often say, "I have solved this kind of problem and remember hearing the problem solving process of it before." But they often are not able to resolve the question. Previous studies suggest that one of the reasons can be students' tendency to approach the conic sections only using algebra or analytic geometry without the geometric principle. So the researcher conducted instructions based on the geometric and historico-genetic principle on the conic sections using dynamic geometry software. The instructions were intended to find out if the experimental, intuitional, mathematic problem solving is necessary for the deductive process of solving geometric problems. To achieve the purpose of this study, the researcher video taped the instruction process and converted it to digital using the computer. What students' had said and discussed with the teacher during the classes was checked and their behavior was analyzed. That analysis was based on Branford's perspective, which included three different stage of proof; experimental, intuitive, and mathematical. The researcher got the following conclusions from this study. Firstly, students preferred their own manipulation or reconstruction to deductive mathematical explanation or proving of the problem. And they showed tendency to consider it as the mathematical truth when the problem is dealt with by their own manipulation. Secondly, the manipulation environment of dynamic geometry software help students correct their mathematical misconception, which result from their cognitive obstacles, and get correct ones. Thirdly, by using dynamic geometry software the teacher could help reduce the 'zone of proximal development' of Vigotsky.

  • PDF

Mathematical Thinking through Problem Solving and Posing with Fractions

  • Cheng, Chun Chor Litwin
    • Research in Mathematical Education
    • /
    • v.16 no.1
    • /
    • pp.15-29
    • /
    • 2012
  • One of the important aims in mathematics education is to enhance mathematical thinking for students. And students posing questions is a vital process in mathematical thinking as it is part of the reasoning and communication of their learning. This paper investigates how students develop their mathematical thinking through working on tasks in fractions and posing their own questions after successfully solved the problems. The teaching was conducted in primary five classes and the results showed that students' reasoning is related to their analogy with what previously learned. Also, posing their problems after solving the problem not only helps students to understand the structure of the problem, it also helps students to explore on different routes in solving the problem and extend their learning content.

A Case study of Metacognitive Strategy Training on Mathematical Problem Solving (메타인지적 활동의 훈련을 통한 문제해결 과정에서의 사고 과정 분석 사례 연구)

  • Lee, Bong-Ju;Ko, Ho-Kyoung
    • Journal of the Korean School Mathematics Society
    • /
    • v.12 no.3
    • /
    • pp.291-305
    • /
    • 2009
  • The purpose of this article is to formulate the base that mathematical thinking power can be improved through activating the metacognitive ability of students in the math problem solving process. The guidance material for activating the metacognitive ability was devised based on a body of literature and various studies. Two high school students used it in their math problem solving process. They reported that their own mathematical thinking power was improved in this process. And they showed that the necessary strategies and procedures for math problem solving can be monitored and controled by analyzing their own metacognition in the mathematical thinking process. This result suggests that students' metacognition does play an important role in the mathematical thinking process.

  • PDF

Effects of an Engineering-Focused STEAM Program Based on the Project Approach for Young Children on Their Scientific Inquiry Ability, Mathematical Problem-Solving Ability, and Creativity (유아 대상 프로젝트 접근법 기반 공학적 STEAM 프로그램이 유아의 과학적 탐구능력, 수학적 문제해결력, 창의성에 미치는 효과)

  • Kwangjae Yu;Jihyun Kim
    • Korean Journal of Childcare and Education
    • /
    • v.19 no.4
    • /
    • pp.29-52
    • /
    • 2023
  • Objective: This research aims to examine the effect of a young children's engineering-focused STEAM program based on the project approach - a program that constructs components aligned with children's interests in their play through an engineering design process - on their scientific inquiry ability, mathematical problem-solving ability, and creativity. Methods: In this research, 42 five-year-old children from a public kindergarten in S district, I city, were randomly divided into experimental and comparative groups, each with 21 children. The engineering-focused STEAM program was conducted from April 18 to June 10, 2022, with the experimental group exploring the 'car' theme and the comparison group focusing on a different theme. The study employed an independent sample t-test and analysis of covariance(ANCOVA), using the pretest as a covariate to control variables. Results: The children-selected 'cars' themed engineering-focused STEAM program was effective in enhancing their scientific inquiry ability, mathematical problem-solving ability and creativity. Conclusion/Implications: The engineering-focused STEAM program, which emerges from young children's interesting daily play, had positive effects on enhancing their scientific inquiry ability, mathematical problem-solving ability, and creativity. This research can serve as fundamental data for developing education programs focused on engineering within the STEAM framework, guided by children's emergent play.

Analysis of Problem-Solving Protocol of Mathematical Gifted Children from Cognitive Linguistic and Meta-affect Viewpoint (인지언어 및 메타정의의 관점에서 수학 영재아의 문제해결 프로토콜 분석)

  • Do, Joowon;Paik, Suckyoon
    • Education of Primary School Mathematics
    • /
    • v.22 no.4
    • /
    • pp.223-237
    • /
    • 2019
  • There is a close interaction between the linguistic-syntactic representation system and the affective representation system that appear in the mathematical process. On the other hand, since the mathematical conceptual system is fundamentally metaphoric, the analysis of the mathematical concept structure through linguistic representation can help to identify the source of cognitive and affective obstacles that interfere with mathematics learning. In this study, we analyzed the problem-solving protocols of mathematical gifted children from the perspective of cognitive language and meta-affect to identify the relationship between the functional characteristics of the text and metaphor they use and the functional characteristics of meta-affect. As a result, the behavior of the cognitive and affective characteristics of mathematically gifted children differed according to the success of problem solving. In the case of unsuccessful problem-solving, the use of metaphor as an internal representation system was relatively more frequent than in the successful case. In addition, while the cognitive linguistic aspects of metaphors play an important role in problem-solving, meta-affective attributes are closely related to the external representation of metaphors.

A Case Study on Instruction for Mathematically Gifted Children through The Application of Open-ended Problem Solving Tasks (개방형 과제를 활용한 수학 영재아 수업 사례 분석)

  • Park Hwa-Young;Kim Soo-Hwan
    • Communications of Mathematical Education
    • /
    • v.20 no.1 s.25
    • /
    • pp.117-145
    • /
    • 2006
  • Mathematically gifted children have creative curiosity about novel tasks deriving from their natural mathematical talents, aptitudes, intellectual abilities and creativities. More effect in nurturing the creative thinking found in brilliant children, letting them approach problem solving in various ways and make strategic attempts is needed. Given this perspective, it is desirable to select open-ended and atypical problems as a task for educational program for gifted children. In this paper, various types of open-ended problems were framed and based on these, teaming activities were adapted into gifted children's class. Then in the problem solving process, the characteristic of bright children's mathematical thinking ability and examples of problem solving strategies were analyzed so that suggestions about classes for bright children utilizing open-ended tasks at elementary schools could be achieved. For this, an open-ended task made of 24 inquiries was structured, the teaching procedure was made of three steps properly transforming Renzulli's Enrichment Triad Model, and 24 periods of classes were progressed according to the teaching plan. One period of class for each subcategories of mathematical thinking ability; ability of intuitional insight, systematizing information, space formation/visualization, mathematical abstraction, mathematical reasoning, and reflective thinking were chosen and analyzed regarding teaching, teaming process and products. Problem solving examples that could be anticipated through teaching and teaming process and products analysis, and creative problem solving examples were suggested, and suggestions about teaching bright children using open-ended tasks were deduced based on the analysis of the characteristic of tasks, role of the teacher, impartiality and probability of approaching through reflecting the classes. Through the case study of a mathematics class for bright children making use of open-ended tasks proved to satisfy the curiosity of the students, and was proved to be effective for providing and forming a habit of various mathematical thinking experiences by establishing atypical mathematical problem solving strategies. This study is meaningful in that it provided mathematically gifted children's problem solving procedures about open-ended problems and it made an attempt at concrete and practical case study about classes fur gifted children while most of studies on education for gifted children in this country focus on the studies on basic theories or quantitative studies.

  • PDF

An Analysis of Problem-solving Ability and Mathematical Justification of Mathematical Essay Problems of 5th Grade Students in Elementary School (수리논술형 문제에 대한 초등학교 5학년 학생들의 문제해결력과 수학적 정당화 과정 분석)

  • Kim, Young-Sook;Pang, Jeong-Suk
    • The Mathematical Education
    • /
    • v.48 no.2
    • /
    • pp.149-167
    • /
    • 2009
  • This study was aimed to examine problem-solving ability of fifth graders on two types of mathematical essay problems, and to analyze the process of mathematical justification in solving the essay problems. For this purpose, a total of 14 mathematical essay problems were developed, in which half of the items were single tasks and the other half were data-provided tasks. Sixteen students with higher academic achievements in mathematics and the Korean language were chosen, and were given to solve the mathematical essay problems individually. They then were asked to justify their solution methods in groups of 4 and to reach a consensus through negotiation among group members. Students were good at understanding the given single tasks but they often revealed lack of logical thinking and representation. They also tended to use everyday language rather than mathematical language in explaining their solution processes. Some students experienced difficulty in understanding the meaning of data in the essay problems. With regard to mathematical justification, students employed more internal justification by experience or mathematical logic than external justification by authority. Given this, this paper includes implications for teachers on how they need to teach mathematics in order to foster students' logical thinking and communication.

  • PDF