• Title/Summary/Keyword: mathematical problem solving

Search Result 1,002, Processing Time 0.022 seconds

The Relationship between Posing and Solving Arithmetic Word Problems among Chinese Elementary School Children

  • Chen, Limin;Van Dooren, Wim;Chen, Qi;Verschaffel, Lieven
    • Research in Mathematical Education
    • /
    • v.11 no.1
    • /
    • pp.1-31
    • /
    • 2007
  • Recent research has documented that there is a close relationship between problem posing and problem solving in arithmetic. However, most studies investigated the relationship between problem posing and problem solving only by means of standard problem situations. In order to overcome that shortcoming, a pilot study with Chinese fourth-graders was done to investigate this relationship using a non-standard, realistic problem situation. The results revealed a significant positive relationship between students' problem posing and solving abilities. Based on that pilot study, a more extensive and systematic ascertaining study was carried out to confirm the observed relationship between problem posing and problem solving among Chinese elementary school children. Results confirmed that there was indeed a close relationship between both skills.

  • PDF

An analysis of spatial reasoning ability and problem solving ability of elementary school students while solving ill-structured problems (초등학생들의 비구조화된 문제 해결 과정에서 나타나는 공간 추론 능력과 문제 해결 능력)

  • Choi, Jooyun;Kim, Min Kyeong
    • The Mathematical Education
    • /
    • v.60 no.2
    • /
    • pp.133-157
    • /
    • 2021
  • Ill-structured problems have drawn attention in that they can enhance problem-solving skills, which are essential in future societies. The purpose of this study is to analyze and evaluate students' spatial reasoning(Intrinsic-Static, Intrinsic-Dynamic, Extrinsic-Static, and Extrinsic-Dynamic reasoning) and problem solving abilities(understanding problems and exploring strategies, executing plans and reflecting, collaborative problem-solving, mathematical modeling) that appear in ill-structured problem-solving. To solve the research questions, two ill-structured problems based on the geometry domain were created and 11 lessons were given. The results are as follows. First, spatial reasoning ability of sixth-graders was mainly distributed at the mid-upper level. Students solved the extrinsic reasoning activities more easily than the intrinsic reasoning activities. Also, more analytical and higher level of spatial reasoning are shown when students applied functions of other mathematical domains, such as computation and measurement. This shows that geometric learning with high connectivity is valuable. Second, the 'problem-solving ability' was mainly distributed at the median level. A number of errors were found in the strategy exploration and the reflection processes. Also, students exchanged there opinion well, but the decision making was not. There were differences in participation and quality of interaction depending on the face-to-face and web-based environment. Furthermore, mathematical modeling element was generally performed successfully.

Reconstruction and application of reforming textbook problems for mathematical modeling process (수학적 모델링 과정을 반영한 교과서 문제 재구성 예시 및 적용)

  • Park, SunYoung;Han, SunYoung
    • The Mathematical Education
    • /
    • v.57 no.3
    • /
    • pp.289-309
    • /
    • 2018
  • There has been a gradually increasing focus on adopting mathematical modeling techniques into school curricula and classrooms as a method to promote students' mathematical problem solving abilities. However, this approach is not commonly realized in today's classrooms due to the difficulty in developing appropriate mathematical modeling problems. This research focuses on developing reformulation strategies for those problems with regard to mathematical modeling. As the result of analyzing existing textbooks across three grade levels, the majority of problems related to the real-world focused on the Operating and Interpreting stage of the mathematical modeling process, while no real-world problem dealt with the Identifying variables stage. These results imply that the textbook problems cannot provide students with any chance to decide which variables are relevant and most important to know in the problem situation. Following from these results, reformulation strategies and reformulated problem examples were developed that would include the Identifying variables stage. These reformulated problem examples were then applied to a 7th grade classroom as a case study. From this case study, it is shown that: (1) the reformulated problems that included authentic events and questions would encourage students to better engage in understanding the situation and solving the problem, (2) the reformulated problems that included the Identifying variables stage would better foster the students' understanding of the situation and their ability to solve the problem, and (3) the reformulated problems that included the mathematical modeling process could be applied to lessons where new mathematical concepts are introduced, and the cooperative learning environment is required. This research can contribute to school classroom's incorporation of the mathematical modeling process with specific reformulating strategies and examples.

Effects of Mathematical Justification on Problem Solving and Communication (수학적 정당화가 문제 해결과 의사소통에 미치는 영향)

  • Jeong, In Su
    • Education of Primary School Mathematics
    • /
    • v.16 no.3
    • /
    • pp.267-283
    • /
    • 2013
  • Mathematical justification is the process through which one's claim is validated to be true based on proper and trustworthy data. But it serves as a catalyst to facilitate mathematical discussions and communicative interactions among students in mathematics classrooms. This study is designed to investigate the effects of mathematical justification on students' problem-solving and communicative processes occurred in a mathematics classroom. In order to fulfill the purpose of this study, mathematical problem-solving classes were conducted. Mathematical justification processes and communicative interactions recorded in problem understanding activity, individual student inquiry, small and whole group discussions are analyzed. Based on the analysis outcomes, the students who participated in mathematical justification activities are more likely to find out various problem-solving strategies, to develop efficient communicative skills, and to use effective representations. In addition, mathematical justification can be used as an evaluation method to test a student's mathematical understanding as well as a teaching method to help develop constructive social interactions and positive classroom atmosphere among students. The results of this study would contribute to strengthening a body of research studying the importance of teaching students mathematical justification in mathematics classrooms.

The Effects of Mathematical Problem Posing Activities by the Fourth Graders (4학년 아동들의 수학적 문제 설정 활동의 효과)

  • 조제호;신인선
    • Education of Primary School Mathematics
    • /
    • v.2 no.2
    • /
    • pp.133-144
    • /
    • 1998
  • We examined two kinds of problem posing, 'problem making' and 'problem modifying' to find which one is more effective for improving mathematical problem solving ability according to the student's learning-levels and sexes. The results showed that 'problem making' is more effective for high and middle-level groups than 'problem modifying'. There was no big difference according to the sexes. These facts implies that making a problem when a situation was presented is more effective to develop problem solving ability than modifying a problem : modifying some conditions and contents of given problem.

  • PDF

An Analysis of Intuitive Thinking of Elementary Students in Mathematical Problem Solving Process (수학 문제해결 과정에 나타난 초등학생들의 직관적 사고 분석)

  • You, Dae-Hyun;Kang, Wan
    • Education of Primary School Mathematics
    • /
    • v.12 no.1
    • /
    • pp.1-20
    • /
    • 2009
  • The purposes of this study are to analyze elementary school student's intuitive thinking in the process of mathematical problem solving and to analyze elementary school student's errors of intuitive thinking in the process of mathematical problem solving. According to these purposes, the research questions can be set up as followings. (1) How is the state of illumination of the elementary school student's intuitive thinking in the process of mathematical problem solving? (2) What are origins of errors by elementary school student's intuitive thinking in the process of mathematical problem solving? In this study, Bogdan & Biklen's qualitative research method were used. The subjects in this study were 4 students who were attending the elementary school. The data in this study were 'Intuitine Thinking Test', records of observation and interview. In the interview, the discourses were recorded by sound and video recording. These were later transcribed and analyzed in detail. The findings of this study were as follows: First, If Elementary school student Knows the algorithm of problem, they rely on solving by algorithm rather than solving by intuitive thinking. Second, their problem solving ability by intuitive model are low. What is more they solve the problem by Intuitive model, their Self- Evidence is low. Third, in the process of solving the problem, intuitive thinking can complement logical thinking. Last, in the concept of probability and problem of probability, they are led into cognitive conflict cause of subjective interpretation.

  • PDF

Flexibility of Mind and Divergent Thinking in Problem Solving Process (수학적 사고의 유연성과 확산적 사고)

  • Choi, Youn-Gi;Do, Jong-Hoon
    • The Mathematical Education
    • /
    • v.44 no.1 s.108
    • /
    • pp.103-112
    • /
    • 2005
  • This paper is designed to characterize the concept of flexibility of mind and analyze relationship between flexibility of mind and divergent thinking in view of mathematical problem solving. This study shows that flexibility of mind is characterized by two constructs, ability to overcome fixed mind in stage of problem understanding and ability to shift a viewpoint in stage of problem solving process, Through the analysis of writing test, we come to the conclusion that students who overcome fixed mind surpass others in divergent thinking and so do students who are able to shift a viewpoint.

  • PDF

Assessment of Mathematical Creativity in Mathematical Modeling

  • Jang, Hong-Shick
    • Research in Mathematical Education
    • /
    • v.15 no.2
    • /
    • pp.181-196
    • /
    • 2011
  • In mathematical modeling tasks, where students are exposed to model-eliciting for real and open problems, students are supposed to formulate and use a variety of mathematical skills and tools at hand to achieve feasible and meaningful solutions using appropriate problem solving strategies. In contrast to problem solving activities in conventional math classes, math modeling tasks call for varieties of mathematical ability including mathematical creativity. Mathematical creativity encompasses complex and compound traits. Many researchers suggest the exhaustive list of criterions of mathematical creativity. With regard to the research considering the possibility of enhancing creativity via math modeling instruction, a quantitative scheme to scale and calibrate the creativity was investigated and the assessment of math modeling activity was suggested for practical purposes.

Knowledge is Key to Variability in Solving Algebraic Word Problems

  • Ng, Swee Fong
    • Research in Mathematical Education
    • /
    • v.15 no.4
    • /
    • pp.311-325
    • /
    • 2011
  • In this paper I propose that teaching students the most efficient method of problem solving may curtail students' creativity. Instead it is important to arm students with a variety of problem solving heuristics. It is the students' responsibility to decide which heuristic will solve the problem. The chosen heuristic is the one which is meaningful to the students.

A Case study on the Validity Review of the Problem Solving Process of Elemetary $5^{th}$ graders (초등학교 5학년 학생들의 문제해결 과정의 타당성 검토 활동에 관한 사례연구)

  • Park, Ji-Yeon;Park, Young-Hee
    • The Mathematical Education
    • /
    • v.51 no.3
    • /
    • pp.265-280
    • /
    • 2012
  • This study aims to provide implications from mathematics education perspective by designing a process of 'validity review on the problem solving process', and then, by analyzing the results. In the result of analysis on the features of children's thinking in accordance with 4 stages of problem solving, children's thinking was equally observed in every stage rather than intensively observed in one stage, and reflective thinking related to important elements from each stage of problem solving process was observed. In the result of analysis of changes in description for problem solving process, there was a difference in the aspects of changes by children's knowledge level in mathematics, however, the activity of validity review on problem solving process in overall induced positive changes in children's description, especially the changes in problem solving process of children. Through the result of this study, we could see that the validity review on problem solving process promotes children's reflective thinking and enables meta-cognition thus has a positive influence on children's description of problem solving process.