• Title/Summary/Keyword: mathematical problem solving

Search Result 1,002, Processing Time 0.029 seconds

Application of '圓容三方互求' as a Mathematically Challenging Problem for Mathematically Gifted Elementary Students (초등 수학영재의 도전적 문제 상황을 위한 원용삼방호구(圓容三方互求)의 활용)

  • Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.17-30
    • /
    • 2016
  • This study focused on the selection and application of mathematical problems to provide mathematically challenging tasks for the gifted elementary students. For the selection, a mathematical problem from <算術管見> of Joseon dynasty, '圓容三方互求', was selected, considering the participants' experiences of problem solving and the variety of approaches to the problem. For the application, teaching strategies such as individual problem solving and sharing of the solving methods were used. The problem was provided for 13 mathematically gifted elementary students. They not only solved it individually but also shared their approaches by presentations. Their solving and sharing processes were observed and their results were analyzed. Based on this, some didactical considerations were suggested.

An Analysis on secondary school students' problem-solving ability and problem-solving process through algebraic reasoning (중고등학생의 대수적 추론 문제해결능력과 문제해결과정 분석)

  • Kim, Seong Kyeong;Hyun, Eun Jung;Kim, Ji Yeon
    • East Asian mathematical journal
    • /
    • v.31 no.2
    • /
    • pp.145-165
    • /
    • 2015
  • The purpose of this study is to suggest how to go about teaching and learning secondary school algebra by analyzing problem-solving ability and problem-solving process through algebraic reasoning. In doing this, 393 students' data were thoroughly analyzed after setting up the exam questions and analytic standards. As with the test conducted with technical school students, the students scored low achievement in the algebraic reasoning test and even worse the majority tried to answer the questions by substituting arbitrary numbers. The students with high problem-solving abilities tended to utilize conceptual strategies as well as procedural strategies, whereas those with low problem-solving abilities were more keen on utilizing procedural strategies. All the subject groups mentioned above frequently utilized equations in solving the questions, and when that utilization failed they were left with the unanswered questions. When solving algebraic reasoning questions, students need to be guided to utilize both strategies based on the questions.

Analysis of problem solving competency and types of tasks in elementary mathematics textbooks: Challenging/Thinking and inquiry mathematics in the domain of number and operation (초등 수학교과서의 문제해결 역량 및 과제 유형 분석: 수와 연산 영역의 도전/생각 수학과 탐구 수학을 중심으로)

  • Yeo, Sheunghyun;Suh, Heejoo;Han, Sunyoung;Kim, Jinho
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.431-449
    • /
    • 2021
  • Elementary mathematics textbooks present contents for enhancing problem solving competency. Still, teachers find teaching problem solving to be challenging. To understand the supports textbooks are suggesting, this study examined tasks from the challenging/thinking and inquiry mathematics. We analyzed 288 mathematical activities based on an analytic framework from the 2015 revised mathematics curriculum. Then, we employed latent class analysis to classify 83 mathematical tasks as a new approach to categorize tasks. As a result, execution of the problem solving process was emphasized across grade levels but understanding of problems was varied by grade levels. In addition, higher grade levels had more opportunities to be engaged in collaborative problem solving and problem posing. We identified three task profiles: 'execution focus', 'collaborative-solution focus', 'multifaceted-solution focus'. In Grade 3, about 80% of tasks were categorized as the execution profile. The multifaceted-solution was about 40% in the thinking/challenging mathematics and the execution profile was about 70% in Inquiry mathematics. The implications for developing mathematics textbooks and designing mathematical tasks are discussed.

The Effects of Mathematical Problem Solving with Multiple Strategies on the Mathematical Creativity and Attitudes of Students (다전략 수학 문제해결 학습이 초등학생의 수학적 창의성과 수학적 태도에 미치는 영향)

  • Kim, Seoryeong;Park, Mangoo
    • Education of Primary School Mathematics
    • /
    • v.24 no.4
    • /
    • pp.175-187
    • /
    • 2021
  • The purpose of this study is to investigate the effects of solving multi-strategic mathematics problems on mathematical creativity and attitudes of the 6th grade students. For this study, the researchers conducted a survey of forty nine (26 students in experimental group and 23 students in comparative group) 6th graders of S elementary school in Seoul with 19 lessons. The experimental group solved the multi-strategic mathematics problems after learning mathematics through mathematical strategies, whereas the group of comparative students were taught general mathematics problem solving. The researchers conducted pre- and post- isomorphic mathematical creativity and mathematical attitudes of students. They examined the t-test between the pre- and post- scores of sub-elements of fluency, flexibility and creativity and attitudes of the students by the i-STATistics. The researchers obtained the following conclusions. First, solving multi-strategic mathematics problems has a positive impact on mathematical creativity of the students. After learning solving the multi-strategic mathematics problems, the scores of mathematical creativity of the 6th grade elementary students were increased. Second, learning solving the multi-strategy mathematics problems impact the interest, value, will and efficacy factors in the mathematical attitudes of the students. However, no significant effect was found in the areas of desire for recognition and motivation. The researchers suggested that, by expanding the academic year and the number of people in the study, it is necessary to verify how mathematics learning through multi-strategic mathematics problem-solving affects mathematical creativity and mathematical attitudes, and to verify the effectiveness through long-term research, including qualitative research methods such as in-depth interviews and observations of students' solving problems.

A study on the improvement of ability of a creative solving mathematical problem (수학문제의 창의적 해결력 신장에 관한 연구 -농어촌 중학교 수학영재를 중심으로-)

  • 박형빈;서경식
    • Journal of the Korean School Mathematics Society
    • /
    • v.6 no.1
    • /
    • pp.1-17
    • /
    • 2003
  • In this paper, we study the methods of improving an ability of a creative solving mathematical problem belonging to an educational system which every province office of education has adopted for the mathematically talented students. Especially, we give an attention on a preferential reaction in teaching styles according to student's LQ., the relationship between student's LQ. and an ability of creative solving mathematical problems, and seeking for an appropriative teaching methods of the improvement ability of a creative solving problem. As results, we have the followings; 1. The group having excellent students who have a higher intelligential ability prefers inquiry learning which is composed of several sub-groups to a teacher-centered instruction. 2. The correlation coefficient between student's LQ. and an ability creative solving of mathematical is not high. 3. Although the contents and the model of thematic inquiry learning don't have a great influence on the divergent thinking (ex. fluency, flexibility, originality), they affect greatly the convergent thinking - a creative mathematical - problem solving ability. Accordingly, our results show that we should use a variety of mathematical teaching materials apart from our regular textbooks used in schools to improve a creative mathematical problem solving ability in the process of thematic inquiry learning. Also we can see that an inquiry learning which stimulates student's participation and discussion can be a desirable model in the thematic mathematical classroom activities.

  • PDF

Influence of Analogy Distance and Mathematical Knowledge in Transfer of Learning (학습 전이에 있어서 유추 거리와 지식의 영향)

  • Sung, Chang-Geun
    • Education of Primary School Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-16
    • /
    • 2014
  • The purpose of this study is to analyze whether analogy distance and mathematical knowledge affect on transfer problems solving with different analogy distance. To conduct the study, transfer problems were classified into multiple categories: mathematical word problem based on rates, science word problem based on rates, and real-life problem based on rates with different analogy distance. Then analysed there are differences in participants' transfer ability and which mathematical knowledge contributes to the solution on over the three transfer problem. The study demonstrated a statistical significant difference(.05) in participants' three transfer problem solving and a gradual decrease of the participants' success rates of on transfer problems solving. Moreover, conceptual knowledge influenced transfer problem solving more than factual knowledge about rates. The study has an important implications in that it provided new direction for study about transfer of learning, and also show a good mathematics instruction on where teachers will put the focus in mathematical lesson to foster elementary students' transfer ability.

How does the middle school students' covariational reasoning affect their problem solving? (연속적으로 공변하는 두 양에 대한 추론의 차이가 문제 해결에 미치는 영향)

  • KIM, CHAEYEON;SHIN, JAEHONG
    • The Mathematical Education
    • /
    • v.55 no.3
    • /
    • pp.251-279
    • /
    • 2016
  • There are many studies on 'how' students solve mathematical problems, but few of them sufficiently explained 'why' they have to solve the problems in their own different ways. As quantitative reasoning is the basis for algebraic reasoning, to scrutinize a student's way of dealing with quantities in a problem situation is critical for understanding why the student has to solve it in such a way. From our teaching experiments with two ninth-grade students, we found that emergences of a certain level of covariational reasoning were highly consistent across different types of problems within each participating student. They conceived the given problem situations at different levels of covariation and constructed their own quantity-structures. It led them to solve the problems with the resources accessible to their structures only, and never reconciled with the other's solving strategies even after having reflection and discussion on their solutions. It indicates that their own structure of quantities constrained the whole process of problem solving and they could not discard the structures. Based on the results, we argue that teachers, in order to provide practical supports for students' problem solving, need to focus on the students' way of covariational reasoning of problem situations.

The Effects of Mathematical Modeling Activities on Mathematical Problem Solving and Mathematical Dispositions (수학적 모델링 활동이 수학적 문제해결력 및 수학적 성향에 미치는 영향)

  • Ko, Changsoo;Oh, Youngyoul
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.3
    • /
    • pp.347-370
    • /
    • 2015
  • The purpose of this study is to examine the effects of mathematical modeling activities on mathematical problem solving abilities and mathematical dispositions in elementary school students. For this study, we administered mathematical modeling activities to fifth graders, which consisted of 8 topics taught over 16 classes. In the results of this study, mathematical modeling activities were statistically proven to be more effective in improving mathematical problem solving abilities and mathematical dispositions compared to traditional textbook-centered lessons. Also, it was found that mathematical modeling activities promoted student's mathematical thinking such as communication, reasoning, reflective thinking and critical thinking. It is a way to raise the formation of desirable mathematical dispositions by actively participating in modeling activities. It is proved that mathematical modeling activities quantitatively and qualitatively affect elementary school students's mathematical learning. Therefore, Educators may recognize the applicability of mathematical modeling on elementary school, and consider changing elementary teaching-learning methods and environment.

Investigation of the Problem Solving in Open-Problem Related to Area (넓이관련 열린 문제에 관한 문제해결 과정 분석)

  • 김민경
    • The Mathematical Education
    • /
    • v.43 no.3
    • /
    • pp.275-289
    • /
    • 2004
  • The purpose of the study is to investigate how children and preservice teachers would make a progress in solving the open-problems related to area. In knowledge-based information age, information inquiry, information construction, and problem solving are required. At the level of elementary school mathematics, area is mainly focused on the shape of polygon such as square, rectangle. However, the shape which we need to figure out at some point would not be always polygon-shape. With this perspective, many open-problems are introduced to children as well as preservice teacher. Then their responses are analyzed in terms of their logical thinking and their understanding of area. In order to make students improve their critical thinking and problem solving ability in real situation, the use of open problems could be one of the valuable methods to apply.

  • PDF

The Sociodynamical Function of Meta-affect in Mathematical Problem-Solving Procedure (수학 문제해결 과정에 작용하는 메타정의의 사회역학적 기능)

  • Do, Joowon;Paik, Suckyoon
    • Education of Primary School Mathematics
    • /
    • v.20 no.1
    • /
    • pp.85-99
    • /
    • 2017
  • In order to improve mathematical problem-solving ability, there has been a need for research on practical application of meta-affect which is found to play an important role in problem-solving procedure. In this study, we analyzed the characteristics of the sociodynamical aspects of the meta-affective factor of the successful problem-solving procedure of small groups in the context of collaboration, which is known that it overcomes difficulties in research methods for meta-affect and activates positive meta-affect, and works effectively in actual problem-solving activities. For this purpose, meta-functional type of meta-affect and transact elements of collaboration were identified as the criterion for analysis. This study grasps the characteristics about sociodynamical function of meta-affect that results in successful problem solving by observing and analyzing the case of the transact structure associated with the meta-functional type of meta-affect appearing in actual episode unit of the collaborative mathematical problem-solving activity of elementary school students. The results of this study suggest that it provides practical implications for the implementation of teaching and learning methods of successful mathematical problem solving in the aspect of affective-sociodynamics.