• 제목/요약/키워드: mathematical performance model

검색결과 1,102건 처리시간 0.03초

내연기관(內燃機關) 배기(排氣)가스를 이용(利用)한 곡물가열기(穀物加熱機) 개발(開發) (Development of Grain Heater Using Engine Exhaust Gas)

  • 서상룡;에프 디 해리스
    • Journal of Biosystems Engineering
    • /
    • 제10권2호
    • /
    • pp.1-11
    • /
    • 1985
  • A double pipe grain heater using engine exhaust gas as a heat source was developed. The performance of the grain heater was examined with soybeans as a test material experimentally and numerically using a mathematical model constructed. The following conclusions were drawn: 1. The modified screw conveyor used in the grain heater has a characteristic of decreasing capacity with increasing speed at speeds above 60 rpm. Operation with speeds below 60 rpm is recommended. 2. Heating soybeans by the heater at soybean flow rate up to 100 kg/hr, inlet temperature of the exhaust gas to the heater are recommended as above $400^{\circ}C$, $300^{\circ}C$, and $200^{\circ}C$ roughly for a 2, 5, and 10 kW engine, respectively. 3. Temperature increments of soybean by the heater at soybean flow rates ranged from 25 to 100 kg/hr are in the ranges of $6^{\circ}C-35^{\circ}C$, $15^{\circ}C-88^{\circ}C$, and $15^{\circ}C-140^{\circ}C$ with exhaust gas from a 2, 5, and 10 kW engine, respectively, at an exhaust temperature of $500^{\circ}C$. 4. Thermal efficiency of the heater at soybean flow rates ranged from 25 to 100 kg/hr are in the ranges of 35-37%, 28-34%, and 20-29% with exhaust gas from a 2, 5, and 10 kW engine, respectively. 5. The grain heater can be used to heat the other grain, also, without any bad effect from the exhaust gas used as a heat source.

  • PDF

Multi-Criteria Group Decision Making under Imprecise Preference Judgments: Using Fuzzy Logic with Linguistic Quantifier

  • 최덕현;안병석;김성희
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.557-567
    • /
    • 2005
  • The increasing complexity of the socio-economic environments makes it less and less possible for single decision-maker to consider all relevant aspects of problem. Therefore are, many organizations employ groups in decision making. In this paper, we present a multiperson decision making method using fuzzy logic with linguistic quantifier when each of group members specifies imprecise judgments possibly both on performance evaluations of alternatives with respect to the multiperson criteria and on the criteria. Inexact or vague preferences have appeared in the decision making literatures with a view to relaxing the burdens of preference specifications imposed to the decision-makers and thus taking into account the vagueness of human judgments. Allowing for the types of imprecise judgments in the model, however, makes more difficult a clear selection of alternative(s) that a group wants to make. So, further interactions with the decision-makers may proceed to the extent to compensate for the initial comforts of preference specifications. These interaction may not however guarantee the selection of the best alternative to implement. To circumvent this deadlock situation, we present a procedure for obtaining a satisfying solution by the use of linguistic quantifier guided aggregation which implies fuzzy majority. This is an approach to combine a prescriptive decision method via a mathematical programming and a well-established approximate solution method to aggregate multiple objects.

  • PDF

Research on a Multi-Objective Control Strategy for Current-source PWM Rectifiers under Unbalanced and Harmonic Grid Voltage Conditions

  • Geng, Yi-Wen;Liu, Hai-Wei;Deng, Ren-Xiong;Tian, Fang-Fang;Bai, Hao-Feng;Wang, Kai
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.171-184
    • /
    • 2018
  • Unbalanced and distorted grid voltages cause the grid side current of a current source PWM rectifier to be heavily distorted. They can also cause the DC-link current to fluctuate with a huge amplitude. In order to enhance the performance of a current-source PWM rectifier under unbalanced and harmonic grid voltage conditions, a mathematical model of a current-source PWM rectifier is established and a flexible multi-objective control strategy is proposed to control the DC-link current and grid-current. The fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic components of the grid voltage are first separated with the proposed control strategy. The grid current reference are optimized based on three objectives: 1) sinusoidal and symmetrical grid current, 2) sinusoidal grid current and elimination of the DC-current $2^{nd}$ order fluctuations, and 3) elimination of the DC-current $2^{nd}$ and $6^{th}$ order fluctuations. To avoid separation of the grid current components, a multi-frequency proportional-resonant controller is applied to control the fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic current. Finally, experimental results verify the effectiveness of proposed control strategy.

적외선센서를 이용한 용접품질 제어에 관한 연구 (A Study on the Control of the Welding Quality Using a Infrared sensor)

  • 김일수;손준식;김학형;서주환;김인주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.754-758
    • /
    • 2005
  • Optimization of process variables such as arc current, welding voltage and welding speed in terms of the weld characteristics desired is the key step in achieving high quality and improving performance characteristics without increasing the cost. Consequently, incorrect settings of those process variables give rise to deviations in the welding characteristics from the desired bead geometry. Therefore, trainee welders are referred to the tabulated information relating different metal types and thickness as to recommend the desired values of process variables. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. However, it is difficult for the traditional identification methods to provide an accurate model because the optimized welding process is non-linear and time-dependent. In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

A Study of Design of Hollow Fiber Membrane Modules for using in Artificial Lung by the PZT Actuator

  • Kim, Gi-Beum;Kim, Seong-Jong;Hong, Chul-Un;Lee, Yong-Chul;Kim, Min-Ho
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권4호
    • /
    • pp.143-153
    • /
    • 2006
  • The purpose of this work was to assess and quantify the beneficial effects of gas exchange, while testingto the various frequencies of the sinusoidal wave that was excited by the PZT actuator, for patients suffering from acute respiratory distress syndrome (ARDS) or chronic respiratory problems. Also, this paper considered a simulator to design a hollow type artificial lung, and a mathematical model was used to predict a behavior of blood. This simulation was carried out according to the Montecarno's simulation method, anda fourth order Runge-Kutta method was used to solve the equation. The experimental design and procedure are then applied to the construction of a new device to assess the effectiveness of the membrane vibrations. As a result, the vibration method is very effective in the increase of gas transport. The gas exchange efficiency for the vibrating intravascular lung assist device can be increased by emphasizing the following design features: consistent and reproducible fiber geometry, and most importantly, an active means of enhancing convective mixing of water around the hollow fiber membranes. The experimental results showed the effective performance of the vibrating intravascular lung assist device. Also, we concluded that important design parameters were blood flow rates, fiber outer diameter and oxygen pressure drop. Based on the present results, it was believed that the optimal level of blood flow rates was 200$cm^3$/min.

전자기해석 및 시뮬레이션을 적용한 차량용 마사지 시트 액츄에이터 개발 (Development of Massage Seat Actuator for Automobile using Electromagnetic Analysis and Simulation)

  • 정명진
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.517-523
    • /
    • 2019
  • 최근 운전자와 승차자의 편안함을 제공할 수 있는 기능을 보유한 자동차 시트에 대한 연구가 마사지 기능을 갖는 자동차 시트를 포함하여 다양한 분야에서 수행되고 있다. 마사지 효과는 시간, 크기, 형상과 같은 마사지 패턴에 의존한다. 본 연구에서는 차량용 마사지 시트의 구동장치로 사용되는 선형모터 액츄에이터와 액츄에이터의 효율향상 설계를 위한 전자기해석 및 시뮬레이션 기법을 제안하였다. 선형모터 액츄에이터 설계에 유한요소 기법을 적용하여 전자기 해석을 수행하고, 액츄에이터의 수식모델을 사용한 시뮬레이션을 통해 두드림 마사지 패턴 구현을 위한 전압 파형을 도출하였다. 제작된 액츄에이터와 제어기를 차량용 마사시 시트에 장착하여 마사지 패턴 생성에 대한 성능검증을 통해 개발된 액츄에이터의 적용 가능성을 확인하였다.

Numerical and experimental investigation for monitoring and prediction of performance in the soft actuator

  • Azizkhani, Mohammadbagher;sangsefidi, Alireza;Kadkhodapour, Javad;Anaraki, Ali Pourkamali
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.167-177
    • /
    • 2021
  • Due to various benefits such as unlimited degrees of freedom, environment adaptability, and safety for humans, engineers have used soft materials with hyperelastic behavior in various industrial, medical, rescue, and other sectors. One of the applications of these materials in the fabrication of bending soft actuators (SA) is that they have eliminated many problems in the actuators such as production cost, mechanical complexity, and design algorithm. However, SA has complexities, such as predicting and monitoring behavior despite the many benefits. The first part of this paper deals with the prediction of SA behavior through mathematical models such as Ogden and Darijani, and its comparison with the results of experiments. At first, by examining different geometric models, the cubic structure was selected as the optimal structure in the investigated models. This geometrical structure at the same pressure showed the most significant bending in the simulation. The simulation results were then compared with experimental, and the final gripper model was designed and manufactured using a 3D printer with silicone rubber as for the polymer part. This geometrical structure is capable of bending up to a 90-degree angle at 70 kPa in less than 2 seconds. The second section is dedicated to monitoring the bending behavior created by the strain sensors with different sensitivity and stretchability. In the fabrication of the sensors, silicon is used as a soft material with hyperelastic behavior and carbon fiber as a conductive material in the soft material substrate. The SA designed in this paper is capable of deforming up to 1000 cycles without changing its characteristics and capable of moving objects weigh up to 1200 g. This SA has the capability of being used in soft robots and artificial hand making for high-speed objects harvesting.

Soft computing based mathematical models for improved prediction of rock brittleness index

  • Abiodun I. Lawal;Minju Kim;Sangki Kwon
    • Geomechanics and Engineering
    • /
    • 제33권3호
    • /
    • pp.279-289
    • /
    • 2023
  • Brittleness index (BI) is an important property of rocks because it is a good index to predict rockburst. Due to its importance, several empirical and soft computing (SC) models have been proposed in the literature based on the punch penetration test (PPT) results. These models are very important as there is no clear-cut experimental means for measuring BI asides the PPT which is very costly and time consuming to perform. This study used a novel Multivariate Adaptive regression spline (MARS), M5P, and white-box ANN to predict the BI of rocks using the available data in the literature for an improved BI prediction. The rock density, uniaxial compressive strength (σc) and tensile strength (σt) were used as the input parameters into the models while the BI was the targeted output. The models were implemented in the MATLAB software. The results of the proposed models were compared with those from existing multilinear regression, linear and nonlinear particle swarm optimization (PSO) and genetic algorithm (GA) based models using similar datasets. The coefficient of determination (R2), adjusted R2 (Adj R2), root-mean squared error (RMSE) and mean absolute percentage error (MAPE) were the indices used for the comparison. The outcomes of the comparison revealed that the proposed ANN and MARS models performed better than the other models with R2 and Adj R2 values above 0.9 and least error values while the M5P gave similar performance to those of the existing models. Weight partitioning method was also used to examine the percentage contribution of model predictors to the predicted BI and tensile strength was found to have the highest influence on the predicted BI.

Time Perception and Memory in Mild Cognitive Impairment and Alzheimer's Disease: A Preliminary Study

  • Sung-Ho Woo;Jarang Hahm;Jeong-Sug Kyong;Hang-Rai Kim;Kwang Ki Kim
    • 대한치매학회지
    • /
    • 제22권4호
    • /
    • pp.148-157
    • /
    • 2023
  • Background and Purpose: Episodic memory is a system that receives and stores information about temporally dated episodes and their interrelations. Our study aimed to investigate the relevance of episodic memory to time perception, with a specific focus on simultaneity/order judgment. Methods: Experiment 1 employed the simultaneity judgment task to discern differences in time perception between patients with mild cognitive impairment or dementia, and age-matched normals. A mathematical analysis capable of estimating subjects' time processing was utilized to identify the sensory and decisional components of temporal order and simultaneity judgment. Experiment 2 examined how differences in temporal perception relate to performance in temporal order memory, in which time delays play a critical role. Results: The temporal decision windows for both temporal order and simultaneity judgments exhibited marginal differences between patients with episodic memory impairment, and their healthy counterparts (p = 0.15, t(22) = 1.34). These temporal decision windows may be linked to the temporal separation of events in episodic memory (Pearson's ρ = -0.53, p = 0.05). Conclusions: Based on our findings, the frequency of visual events accumulated and encoded in the working memory system in the patients' and normal group appears to be approximately (5.7 and 11.2) Hz, respectively. According to the internal clock model, a lower frequency of event pulses tends to result in underestimation of event duration, which phenomenon might be linked to the observed time distortions in patients with dementia.

조이스틱을 이용한 선박의 입출항 및 접이안 시스템의 제어 알고리즘 개발 (Development of Control Algorithm for Ship Berthing and Unberthing Systems Using a Joystick)

  • 홍성국;정윤하;김선영;원문철
    • 한국항해항만학회지
    • /
    • 제31권5호
    • /
    • pp.325-332
    • /
    • 2007
  • 본 연구에서는 조이스틱을 이용하여 프로펠러와 타, 선수/선미 쓰러스터를 갖는 선박의 접이안을 위한 제어 알고리즘을 개발하였다. 조이스틱으로부터 전진 방향 및 회전 방향의 속도명령을 받아 전진 방향 및 회전 방향의 속도를 제어하는 MIMO(Multi-Input Multi-Output) 비선형 제어 알고리즘을 개발하기 위해 저속 조종수학모형을 사용하였다. 또한, 본 연구에서는 비선형 및 PID 제어기의 성능을 검증하기 위해 선박 접이안 가상 HILS(Hardware in the Loop Simulation) 프로그램을 구현하였다. HILS 프로그램은 LabWindow/CVI를 이용하여 개발하였으며, 사용자는 선박의 현재 위치와 원하는 궤적을 모니터를 통해 본 후 조이스틱을 이용하여 선박의 전진 방향 및 회전방향 속도를 제어함으로서 선박을 조종한다. 시뮬레이션 결과를 보면 비선형 제어기와 PID 제어기는 개루프 조이스틱 제어기보다 타와 쓰러스터의 입력 크기뿐 아니라 선박의 위치오차 면에서도 우수한 성능을 보였다.