• Title/Summary/Keyword: mathematical assessment

Search Result 521, Processing Time 0.027 seconds

Analytic adherend deformation correction in the new ISO 11003-2 standard: Should it really be applied?

  • Ochsner, A.;Gegner, J.;Gracio, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.14-26
    • /
    • 2004
  • For reliable determination of mechanical characteristics of adhesively bonded joints used e.g. as input data for computer-aided design of complex components, the thick-adherend tensile-shear test according to ISO 11003-2 is the most important material testing method. Although the total displacement of the joint is measured across the polymer layer directly in the overlap zone in order to minimize the influence of the stepped adherends, the substrate deformation must be taken into account within the framework of the evaluation of the shear modulus and the maximum shear strain, at least when high-strength adhesives are applied. In the standard ISO 11003-2 version of 1993, it was prescribed to perform the substrate deformation correction by means of testing a one-piece reference specimen. The authors, however, pointed to the excessive demands on the measuring accuracy of the extensometers connected with this technique in industrial practice and alternatively proposed a numerical deformation analysis of a dummy specimen. This idea of a mathematical correction was included in the revised ISO 11003-2 version of 2001 but in the simplified form of an analytical method based on Hooke's law of elasticity for small strains. In the present work, it is shown that both calculation techniques yield considerably discordant results. As experimental assessment would require high-precision distance determination (e.g. laser extensometer), finite element analyses of the deformation behavior of the bonded joint are performed in order to estimate the accuracy of the obtained substrate deformation corrections. These simulations reveal that the numerical correction technique based on the finite element deformation modeling of the reference specimen leads to considerably more realistic results.

  • PDF

An Analysis on the Contents of Fraction in CA-CCSSM and its Textbook (미국 캘리포니아 주의 CA-CCSSM과 그에 따른 교과서에 제시된 분수 개념에 관한 내용 분석)

  • Lee, Dae Hyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.21 no.4
    • /
    • pp.547-574
    • /
    • 2017
  • The purpose of analysis of foreign curriculums and textbooks is to aimed to get the implications for the revision of curriculum, publishment of textbooks and teaching mathematics. In this study, Common Core State Standards and its textbooks was analyzed. The U. S. doesn't have the national mathematics curriculum. So, it can be happen some problems: students' lower mathematical achievement, assessment policy, decision of teaching contents, etc. In 2010, Common Core State Standards was developed by states. Furthermore, The California Department of Education reshaped standards: CA-CCSSM. This study analyzed the contents of fraction in CA-CCSSM and its textbooks. Fraction has many concepts and methods and models in teaching process. This study analyzed the equal parts, introducing fraction concept, the types of fraction, equivalent fractions, comparison of fractions. The conclusions are as follows; The equal parts are the important concept of fraction and introduced in geometry area before teaching of fraction. CA-CCSSM aims to understand a fraction as a number on the number line and represent fractions on a number line diagram. There are some similarity and difference in mixed number, fractions as a division and ratio, equivalent fractions and comparison of fractions between Korean curriculum and textbooks and CA-CCSSM.

  • PDF

Analysis of Elementary School Mathematics Textbooks for the Development of Mathematics Curriculum to Meet the Needs of the Knowledge-Driven Society (지식기반사회에서의 초등수학과 교육과정 개발을 위한 기초연구로서의 제 7차 초등 수학 교과서 분석)

  • 김경자;정미화;손지원
    • Education of Primary School Mathematics
    • /
    • v.6 no.1
    • /
    • pp.11-28
    • /
    • 2002
  • The purposes of this study were to analyze elementary school mathematics textbooks developed in accordance with the 7th national amended curriculum and to find implications for the development of a new revised curriculum to meet the needs of the knowledge-based society. Elementary school mathematics textbooks and accompanying practice books were analyzed. Teacher's manuals were also studied to examine the intentions of the textbook developers. The two major questions were sought. First, to what degree do elementary school mathematics textbooks and practice books match with the intentions of the national curriculum\ulcorner Second, how do elementary school mathematics textbooks and practice books facilitate student's learning for understanding mathematics\ulcorner The findings were as follows. First textbooks, practice books, and teacher's manuals appeared not to reflect the intentions of the 7th amended curriculum to the full extent. Second, characteristics and roles of textbooks, practice books, and teacher's manuals were not clearly defined and therefore, they were not very feasible for teaming for understanding mathematics. The recommendations for a new revised curriculum were suggested. First, regarding the contents presented in the textbooks, the idea of structure of subject matter need to be considered in order to help students to understand connections of concepts and relationships between concepts and functions in mathematics. Second, more ill defined problems should be presented to develop problem solving ability in real life contexts in students. Third, contents for relearning and enrichment need to be reorganized to reflect students' real ability. Fourth, uses of the concrete and the manipulative need to be more realistically suggested. Fifth, more prototypes of performance assessment tasks, scoring rubrics, and portfolios need to be presented in a more teacher-friendly manner. Sixth, characteristics and roles of textbooks and practice books need to be more discernible.

  • PDF

Comparison of Fatigue Damage Models of Spread Mooring Line for Floating Type Offshore Plant (부유식 해양플랜트 다점 계류라인의 피로손상모델 비교)

  • Park, Jun-Bum;Kim, Kookhyun;Kim, Kyung-Su;Ko, Dae-Eun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.63-69
    • /
    • 2013
  • The mooring lines of a floating type offshore plant are known to show wide banded and bimodal responses. These phenomena come from a combination of low and high frequency random load components, which are derived from the drift-restoring motion characteristic and wind- sea, respectively. In this study, fatigue models were applied to predict the fatigue damage of mooring lines under those loads, and the result were compared. For this purpose, seven different fatigue damage prediction models were reviewed, including mathematical formula. A FPSO (floating, production, storage, and offloading) with a $4{\times}4$ spread catenary mooring system was selected as a numerical model, which was already installed at an offshore area of West Africa. Four load cases with different combinations of wave and wind spectra were considered, and the fatigue damage to each mooring line was estimated. The rain flow fatigue damage for the time process of the mooring tension response was compared with the results estimated by all the fatigue damage prediction models. The results showed that both Benasciutti-Tovo and JB models could most accurately predict wide banded bimodal fatigue damage to a mooring system.

Analyzing the Market Structure of Asian Construction Contracts : A Perspective on Korean Construction Firms (국내 건설기업의 아시아 계약실적 구조 분석)

  • Lee, Kang-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.623-630
    • /
    • 2019
  • As the Asian region becomes strategically important in the international construction market, competition among construction firms has been more intense. While existing literature on the Asian construction market have mainly focused on qualitative approaches to market entry strategies and risk assessment, quantitative research to explain the dynamic competitive structure of the market has been rarely conducted. To address this issue, this study analyzes the structure of contract performance in the Asian region based on the data from 3,996 projects awarded to Korean construction firms from 2009 to 2017. In addition, this study applies a mathematical model using both static (market concentration) and dynamic (market mobility and instability) analyses. Consequently, the static analysis indicates that market concentration led by top-four firms tends to be increased, and on the dynamic aspect, the market position of Korean construction firms is recently weakened and fluctuated in most of the Asian regions and the construction sectors. The methodology and result of this paper would be meaningful not only to understand the underlying structure of industry-level performance but also to provide a useful reference for establishing competitive strategies towards the Asian market.

Modeling the Multi-Dimensional Phenomenon of Fatiguing by Assessing the Perceived Whole Body Fatigue and Local Muscle Fatigue During Squat Lifting (무릎들기 작업 시 전신피로 감지 수준과 근육 피로도를 활용한 다면적 피로현상 모델링)

  • Ahmad, Imran;Kim, Jung-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • Whole body fatigue detection is an important phenomenon and the factors contributing to whole body fatigue can be controlled if a mathematical model is available for its assessment. This research study aims at developing a model that categorizes whole body exertion into fatigued and non-fatigued states based on physiological and perceived variables. For this purpose, logistic regression was used to categorize the fatigued and non-fatigued subject as dichotomous variable. Normalized mean power frequency of eight muscles from 25 subjects was taken as physiological variable along with the heart rate while Borg scale ratings were taken as perceived variables. The logit function was used to develop the logistic regression model. The coefficients of all the variables were found and significance level was checked. The detection accuracy of the model for fatigued and non-fatigues subjects was 83% and 95% respectively. It was observed that the mean power frequency of anterior deltoid and the Borg scale ratings of upper and lower extremities were significant in predicting the whole body fatigued when evaluated dichotomously (p < 0.05). The findings can help in better understanding of the importance of combined physiological and perceived exertion in designing the rest breaks for workers involved in squat lifting tasks in industrial as well as health sectors.

Relationship Assessment on Amount of Irrigation Water & Productivity of Rice by Production Function (생산함수를 이용한 농업용수 관개량과 벼 생산성간 관계 평가)

  • Hur, Seung-Oh;Choi, Soonkun;Yeop, Sojin;Hong, Seong-Chang;Choi, Dongho
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.133-138
    • /
    • 2019
  • BACKGROUND: Production function gives the equation that shows the relationship between the quantities of productive factors used and the amount of product obtained, and can answer a variety of questions. This study was carried out to evaluate the relationship between irrigation water used for rice production and rice productivity by the production function which shows the mathematical relation between input and output. METHODS AND RESULTS: The statistical data on rice production and on the amount of irrigation water were used for the production function analysis. The analysis period was separated for 1966-1981 and 1982-2011, based on goal's change on agriculture from 'increasing food' to 'complex farming'. The relation between irrigation and yield considering production function is a short-term production function both before and after 1982. These results can be expressed by the sigmoid relation. When comparing the graphs of the two analyzed periods, there are differences in quantity between the maximum point and the minimum point during the same analysis period, which can be called an 'Irrigation Effect' by the difference of irrigation, and 'Technical Effect' by the difference by inputs like as fertilizers etc. CONCLUSION: The results could be useful as information for assessing the relationship between agricultural water and the productivity of rice and predicting rice productivity by irrigation water in Korea.

Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.715-726
    • /
    • 2019
  • Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.

Development of the Agro-Industrial Complex for Improving the Economic Security of the State

  • Petrunenko, Iaroslav;Pohrishcuk, Borys;Abramova, Maryna;Vlasenko, Yurii;Halkin, Vasyl
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.191-197
    • /
    • 2021
  • Ensuring the economic security of agro-industrial complexes of Ukrainian regions has become a top-priority task of state regional policy, as their stable functioning is an essential element of economic security of the whole country. It is overcoming threats to the development of the agro-industrial complex that ensures its further effective functioning and has a significant impact on the economic security of our state. Methods: logical method; methods of system analysis; synthesis; economic and statistical method; method of expert assessment; SWOT analysis; economic and mathematical modelling and planning. Results. Characteristic features of economic security have been given. The essence and significance of the agro-industrial complex in improving the economic security of the state have been determined. It has been noted that in recent years, the agro-industrial complex, which acts as a driver of the domestic economy and has a direct impact on the development of the country, has been growing (in 2019 the cereal and legume harvest exceeded 75 million tons, 20,269 thousand tons of potatoes were dug, more than 15 million tons of sunflower, 9,688 thousand tons of vegetables and 2,119 thousand tons of fruits and berries were harvested, meat and egg production increased by 137.5 thousand tons (or 5.8%) and 545.5 million pieces (or 3.4%), respectively, the number of employed population in agriculture increased by 139.8 thousand people (or 4.9%), the labour productivity in crop production increased by UAH 294.4 thousand (or 44.6%), in livestock production - by UAH 311.3 thousand (or 61.8%)). Based on the system of production and economic indicators, the analysis of the state of the agro-industrial complex has been carried out. Taking into account the results of the obtained data and using SWOT-analysis, the major threats to the development of the agro-industrial complex have been identified. Ways of overcoming threats enhancing the economic security of Ukraine have been proposed.

Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor

  • Zhao, Pengcheng;Liu, Zijing;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Shen, Chong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2789-2802
    • /
    • 2020
  • Small Modular Reactors (SMRs) are attracting wide attention due to their outstanding performance, extensive studies have been carried out for lead-based fast reactors (LFRs) that cooled with Lead or Lead-bismuth (LBE), and small modular natural circulation LFR is one of the promising candidates for SMRs and LFRs development. One of the challenges for the design small modular natural circulation LFR is to master the natural circulation thermal-hydraulic performance in the reactor primary circuit, while the natural circulation characteristics is a coupled thermal-hydraulic problem of the core thermal power, the primary loop layout and the operating state of secondary cooling system etc. Thus, accurate predicting the natural circulation LFRs thermal-hydraulic features are highly required for conducting reactor operating condition evaluate and Thermal hydraulic design optimization. In this study, a thermal-hydraulic analysis code is developed for small modular natural circulation LFRs, which is based on several mathematical models for natural circulation originally. A small modular natural circulation LBE cooled fast reactor named URANUS developed by Korea is chosen to assess the code's capability. Comparisons are performed to demonstrate the accuracy of the code by the calculation results of MARS, and the key thermal-hydraulic parameters agree fairly well with the MARS ones. As a typical application case, steady-state analyses were conducted to have an assessment of thermal-hydraulic behavior under nominal condition, and several parameters affecting natural circulation were evaluated. What's more, two characteristics parameters that used to analyze natural circulation LFRs natural circulation capacity were established. The analyses show that the core thermal power, thermal center difference and flow resistance is the main factors affecting the reactor natural circulation. Improving the core thermal power, increasing the thermal center difference and decreasing the flow resistance can significantly increase the reactor mass flow rate. Characteristics parameters can be used to quickly evaluate the natural circulation capacity of natural circulation LFR under normal operating conditions.