• Title/Summary/Keyword: materials science

Search Result 32,863, Processing Time 0.061 seconds

Studies on Inheritance and Ecological Variation of the Culm Length and Its Related Characters in Short-Statured Rice Varieties (수도단간품종의 간장 및 관련형질의 유전과 생태적 변이에 관한 연구)

  • Sung-Ho Bea
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.13
    • /
    • pp.1-40
    • /
    • 1973
  • These studies were aimed at clarification of genetic and ecological variation in culm length, panicle length and plant height of the $\textrm{F}_2$ plants in some selected crosses made between semi-dwarf rice varieties and tall Japonica ones. One Indica semi-dwarf, Taichung Native 1, one Indica $\times$ Japonica hybrid, IE51 and one Japonica semi-dwarf, Tankanbaekmang were used as short-gene donors while two of medium maturity varieties, Jinheung and Kwanok and one late veriety, Palkweng were used as the corresponding counterpart of respective dwarf varieties in a series of crosses. Five different crosses, Kwanok $\times$ Tankanbaekmang, Palkweng $\times$ Tankanbaekmang, Jinheung $\times$ T(N)1, Kwanok $\times$ T(N)1 and Kwanok $\times$ IE51, were made among the above six varieties. The $\textrm{F}_2$ plants of these crosses together with the concerned parental varieties were grown under several different conditions including three levels of each nitrogen and planting space, three planting seasons and three locations in 1968, to investigate variation in length of culm and panicle, and plant height. On the other hand, the F$_3$ progenies which were derived from the shortest 10 percent of the plants of three $\textrm{F}_2$ populations, Kwanok $\times$ T(N)1, Jinheung $\times$ T(N) 1 and Kwanok $\times$ IE51 grown in the previous year, were compared each other on the basis of selection efficiency in culm length. The experimental results could be summarized as follows; 1. Genetic behavior A. It was revealed that Tankanbaekmang, one of Japonica dwarf has a simple recessive gene responsible for short culm expression, showing a typical segregation ratio of three tall to one short culm plants in $\textrm{F}_2$ generation of the crosses either with Kwanok or Palkweng. B. In the both combinations, segregation pattern of the panicle length was exactly same as that of culm length. It seems that the same gene controls both culm length and panicle length. C. No difference between segregation of culm length and plant height in the above crosses was observed. D. T(N)1, one of Indica semi-dwarf did not show such a simple genetic behavior as detected from the crosses with Tankanbaekmang in segregation of culm length but formed a continuous and normal distribution curve. Therefore, some nonallelic genic actions might be involved in expression of culm length of the counterpart varieties of T(N)1. In particular, a transgressive segregation appeared toward the direction of longer culm length in case of Jinheung $\times$ T(N)1. The genetic behavior of panicle length and plant height generally coincided with that of culm length in all the cases. E. IE51 demonstrated exactly the same genetic behavior as that of T(N)1 when this variety was crossed with Kwanok. It was clearly clarified that the simple recessive gene controlling dwarfism from T(N)1 was well incorporated into this variety. 2. Ecological variation A. In general, there was a decreasing tendency in culm length and plant height of rice plant as seeding delayed while it was not so noticeable in panicle length. The decreasing magnitude varied from variety to variety and from cross to cross. Genetic behavior of the culm length and related characters of these materials was not disturbed by the variation of seeding season, nitrogen level, planting space and experimental location. E. The elongation mode of the upper three internodes was very similar to the segregation mode of culm length, panicle length and plant height in $\textrm{F}_2$ populations of . all the crosses investigated in this study. Accordingly, this result confirmed that the roles of the upper three internodes are very important in manifesting plant stature in rice. C. The effect of nitrogen on culm length and the related other two characters seemed to be meager. However, it was true to show an increasing tendency of those characters as nitrogen level got increased from 4 kg to 12kg per l0a, with different magnitude depending upon variety or cross. D. Also, the effect of planting space on culm length, panicle length and plant height was relatively small in all the cases. Those characters varied again depending upon variety or cross. However, a general increasing tendency was detected in manifestation of those traits under denser planting space condition. E. All the parental varieties produced shorter culm, panicle and plant height when they were grown at the lower latitude locations. It might be attributed to the fact that their reproductive growth accelerated with increased temperature prevailing at the lower latitude locations such as Iri and Mi1yang. On the countrary, $\textrm{F}_2$ population reacted differently to the different locations from the parental varieties. All the $\textrm{F}_2$ plants produced the longest culm, panicle and plant at Milyang. 3. Selection efficiency A. The heritability of culm length in Kwanok $\times$ T(N)1, Kwanok $\times$ IE51 and Jinheung$\times$T(N)1 was 92 percent, 74 percent and 55 percent, respectively. B. The actual genetic advance for culm length obtained from the progeny lines of the selected plants(10 precent) from the $\textrm{F}_2$ generation, was comparable to the expected advance calculated from the original $\textrm{F}_2$ populations. As compared with the $\textrm{F}_2$ population, the $\textrm{F}_3$ plants of Kwanok $\times$ T(N)l shortened on the average by 20.8cm, those of Kwanok $\times$ IE51 did 8.7cm and those of Jinheung$\times$T(N)1 20.0cm, respectively. C. Panicle length of the populations was differently affected from one cross to another by the selection based upon culm length in $\textrm{F}_2$ Kwanok $\times$ T(N)1 did not show any noticeable shortening of its culm length due to the selection pressure. On the other hand, both Kwanok $\times$ IE51 and Jinheung $\times$ T(N)1 showed a considerable shortening of their panicles in case of selection for culm length. Based upon the above results, it could be concluded that the ecological variation in culm length, panicle length and plant height was relatively small and fallen within the range of genetic variation. Considering from the fact that the simple recessive gene governing short height of Tankanbaekmang always accompanied with some undesirable characters such as short panicle and extremely small grain, the short gene of T(N)1 seemed to be more useful as dwarf gene source since it did not carry short gene together with such undesirable traits.

  • PDF

Study on the Technological System of the Cooperative Cultivation of Paddy Rice in Korea (수도집단재배의 기술체계에 관한 연구)

  • Min-Shin Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.8 no.1
    • /
    • pp.129-177
    • /
    • 1970
  • For the purpose of establishing the systematized technical scheme of the cooperative rice cultivation which has most significant impact to improve rice productivity and the farm management, the author have studied the cultivation practices, and the variation of rice growth and yield between the cooperative rice cultivation and the individual rice cultivation at random selected 18 paddy fields. The author also have investigated through comparative method on the cultivation practices, management, organization and operation scheme of the two different rice cultivation methods at 460 paddy fields. The economic feasibility has been ana lysed and added in this report. The results obtained from this study are summarized as follows; 1. In the nursery, the average amount of fertilizer application, especially, phosphate and potassium, and the frequency of chemicals spray for the disease, insect and pest control at the cooperative rice cultivation are significantly higher than those of the individual rice cultivation. 2. The cultivation techniques of the cooperative rice farming after the transplanting can be characterized by a) the earlier transplanting of rice, b) the denser hills per unit area and the lesser number of seedlings per hill, c) the application of larger quantities of fertilizer including nitrogen, phosphate and potassium, d) more divided application of fertilizers, split doses of the nitrogen and potassium, e) the increased frequencies of the chemicals spray for the prevention of disease, insect and pest damages. 3. The rate of lodging in the cooperative rice cultivation was slightly higher than that of the individual rice cultivation, however, the losses of rice yield owing to the occurrence of rice stem borer and grass leaf roller in the cooperative rice cultivation were lower than that of the individual rice cultivation. 4. The culm length, panicle length, straw weight and grain-straw ratio are respectively higher at the cooperative rice cultivation, moreover, the higher variation of the above factors due to different localities of the paddy fields found at the individual rice cultivation. 5. The number of panicles, number of flowers per panicle and the weight of 1, 000 grains, those contributing components to the rice yield were significantly greater in the cooperative rice cultivation, however, not clear difference in the maturing rate was observed. The variation coefficient of the yield component in the cooperative cultivation showed lower than that or the individual rice cultivation. 6. The average yield of brown rice per 10 are in the cooperative rice cultivation obtained 459.0 kilograms while that of the individual rice cultivation brought 374.8 kilograms. The yield of brown rice in the cooperative rice cultivation increased 84.2 kilogram per 10 are over the individual rice cultivation. With lower variation coefficient of the brown rice yield in the cooperative rice cultivation, it can be said that uniformed higher yield could be obtained through the cooperative rice cultivation. 7. Highly significant positive correlations shown between the seeding date and the number of flowers per panicle, the chemical spray and the number of flowers per panicle, the transplanting date and the number of flowers per panicle, phosphate application and yield, potassium application and maturing rate, the split application of fertilizers and yield. Whilst the significant negative correlation was shown between the transplanting date and the maturing rate 8. The results of investigation from 480 paddy fields obtained through comparative method on the following items are identical in general with those obtained at 18 paddy fields: Application of fertilizers, chemical spray for the control of disease, insects and pests both in the nursery and the paddy field, transplanting date, transplanting density, split application of fertilizers and yield n the paddy fields. a) The number of rice varieties used in the cooperative rice cultivation were 13 varieties while the individual rice cultivation used 47 varieties. b) The cooperative rice cultivation has more successfully adopted improved cultivation techniques such as the practice of seed disinfection, adoption of recommended seeding amount, fall ploughing, application of red soil, introduction of power tillers, the rectangular-type transplanting, midsummer drainage and the periodical irrigation. 9. The following results were also obtained from the same investigation and they are: a) In the cooperative rice cultivation, the greater part of the important practices have been carried out through cooperative operation including seed disinfection, ploughing, application of red soil and compost, the control of disease, insects and pests, harvest, threshing and transportation of the products. b) The labor input to the nursery bed and water control in the cooperative rice cultivation was less than that of the individual rice cultivation while the higher rate of labor input was resulted in the red soil and compost application. 10. From the investigation on the organization and operation scheme of the cooperative rice cultivation, the following results were obtained: a) The size of cooperative rice cultivation farm was varied from. 3 ha to 7 ha and 5 ha farm. occupied 55.9 percent of the total farms. And a single cooperative farm was consisted of 10 to 20 plots of paddies. b) The educational back ground of the staff members involved in the cooperative rice cultivation was superior than that of the individual rice cultivation. c) All of the farmers who participated to the questionaires have responded that the cooperative rice cultivation could promise the increased rice yield mainly through the introduction of the improved method of fertilizer application and the effective control of diseases, insects and pests damages. And the majority of farmers were also in the opinion that preparation of the materials and labor input can be timely carried out and the labor requirement for the rice cultivation possibly be saved through the cooperative rice cultivation. d) The farmers who have expressed their wishes to continue and to make further development of the cooperative rice cultivation was 74.5 percent of total farmers participated to the questionaires. 11. From the analysis of economical feasibility on the two different methods of cultivation, the following results were obtained: a) The value of operation cost for the compost, chemical fertilizers, agricultural chemicals and labor input in the cooperative rice cultivation was respectively higher by 335 won, 199 won, 288 won and 303 won over the individual rice cultivation. However, the other production costs showed no distinct differences between the two cultivation methods. b) Although the total value of expenses for the fertilizers, agricultural chemicals, labor input and etc. in the cooperative rice cultivation were approximately doubled to the amount of the individual rice cultivation, the net income, substracted operation costs from the gross income, was obtained 24, 302 won in the cooperative rice cultivation and 20, 168 won was obtained from the individual rice cultivation. Thereby, it can be said that net income from the cooperative rice cultivation increased 4, 134 won over the individual rice cultivation. It was revealed in this study that the cooperative rice cultivation has not only contributed to increment of the farm income through higher yield but also showed as an effective means to introduce highly improved cultivation techniques to the farmers. It may also be concluded, therefore, the cooperative rice cultivation shall continuously renovate the rice production process of the farmers.

  • PDF

Studies on the Estimation of Leaf Production in Mulberry Trees 1. Estimation of the leaf production by leaf area determination (상엽 수확고 측정에 관한 연구 - 제1보 엽면적에 의한 상엽량의 순서 -)

  • 한경수;장권열;안정준
    • Journal of Sericultural and Entomological Science
    • /
    • v.8
    • /
    • pp.11-25
    • /
    • 1968
  • Various formulae for estimation of leaf production in mulberry trees were investigated and obtained. Four varieties of mulberry trees were used as the materials, and seven characters namely branch length. branch diameter, node number per branch, total branch weight, branch weight except leaves, leaf weight and leaf area, were studied. The formulae to estimate the leaf yield of mulberry trees are as follows: 1. Varietal differences were appeared in means, variances, standard devitations and standard errors of seven characters studied as shown in table 1. 2. Y$_1$=a$_1$X$_1$${\times}$P$_1$......(l) where Y$_1$ means yield per l0a by branch number and leaf weight determination. a$_1$.........leaf weight per branch. X$_1$.......branch number per plant. P$_1$........plant number per l0a. 3. Y$_2$=(a$_2$${\pm}$S. E.${\times}$X$_2$)+P$_1$.......(2) where Y$_2$ means leaf yield per l0a by branch length and leaf weight determination. a$_2$......leaf weight per meter of branch length. S. E. ......standard error. X$_2$....total branch length per plant. P$_1$........plant number per l0a as written above. 4. Y$_3$=(a$_3$${\pm}$S. E${\times}$X$_3$)${\times}$P$_1$.....(3) where Y$_3$ means of yield per l0a by branch diameter measurement. a$_3$.......leaf weight per 1cm of branch diameter. X$_3$......total branch diameter per plant. 5. Y$_4$=(a$_4$${\pm}$S. E.${\times}$X$_4$)P$_1$......(4) where Y$_4$ means leaf yield per 10a by node number determination. a$_4$.......leaf weight per node X$_4$.....total node number per plant. 6. Y$\sub$5/= {(a$\sub$5/${\pm}$S. E.${\times}$X$_2$)Kv}${\times}$P$_1$.......(5) where Y$\sub$5/ means leaf yield per l0a by branch length and leaf area measurement. a$\sub$5/......leaf area per 1 meter of branch length. K$\sub$v/......leaf weight per 100$\textrm{cm}^2$ of leaf area. 7. Y$\sub$6/={(X$_2$$\div$a$\sub$6/${\pm}$S. E.)}${\times}$K$\sub$v/${\times}$P$_1$......(6) where Y$\sub$6/ means leaf yield estimated by leaf area and branch length measurement. a$\sub$6/......branch length per l00$\textrm{cm}^2$ of leaf area. X$_2$, K$\sub$v/ and P$_1$ are written above. 8. Y$\sub$7/= {(a$\sub$7/${\pm}$S. E. ${\times}$X$_3$)}${\times}$K$\sub$v/${\times}$P$_1$.......(7) where Y$\sub$7/ means leaf yield estimates by branch diameter and leaf area measurement. a$\sub$7/......leaf area per lcm of branch diameter. X$_3$, K$\sub$v/ and P$_1$ are written above. 9. Y$\sub$8/= {(X$_3$$\div$a$\sub$8/${\pm}$S. E.)}${\times}$K$\sub$v/${\times}$P$_1$.......(8) where Y$\sub$8/ means leaf yield estimates by leaf area branch diameter. a$\sub$8/......branch diameter per l00$\textrm{cm}^2$ of leaf area. X$_3$, K$\sub$v/, P$_1$ are written above. 10. Y$\sub$9/= {(a$\sub$9/${\pm}$S. E.${\times}$X$_4$)${\times}$K$\sub$v/}${\times}$P$_1$......(9) where Y$\sub$7/ means leaf yield estimates by node number and leaf measurement. a$\sub$9/......leaf area per node of branch. X$_4$, K$\sub$v/, P$_1$ are written above. 11. Y$\sub$10/= {(X$_4$$\div$a$\sub$10/$\div$S. E.)${\times}$K$\sub$v/}${\times}$P$_1$.......(10) where Y$\sub$10/ means leaf yield estimates by leaf area and node number determination. a$\sub$10/.....node number per l00$\textrm{cm}^2$ of leaf area. X$_4$, K$\sub$v/, P$_1$ are written above. Among many estimation methods. estimation method by the branch is the better than the methods by the measurement of node number and branch diameter. Estimation method, by branch length and leaf area determination, by formulae (6), could be the best method to determine the leaf yield of mulberry trees without destroying the leaves and without weighting the leaves of mulberry trees.

  • PDF