• 제목/요약/키워드: material variations

검색결과 824건 처리시간 0.027초

온도변화에 따른 백금 실리사이드-엔 실리콘 접합의 전자 터널링 특성 (Electron Tunneling Characteristics of PtSi-nSi Junctions according to Temperature Variations)

  • 장창덕;이정석;이광우;이용재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.87-91
    • /
    • 1998
  • In this paper, We analyzed the current-voltage characteristics with n-type silicon substrates concentration and temperature variations (Room temperature, 50$^{\circ}C$, 75$^{\circ}C$) in platinum silicide and silicon junction. The electrical parameters of measurement are turn-on voltage, saturation current, ideality factor, barrier height, dynamic resistance in forward bias and reverse breakdown voltage according to variations of junction concentration of substrates and measurement temperature variations. As a result, the forward turn-on voltage, reverse breakdown voltage, barrier height and dynamic resistance were decreased but saturation currents and ideality factor were increased by substrates increased concentration variations in platinum silicide and n-silicon junction. In increased measurement temperature (RT, 50$^{\circ}C$, 75$^{\circ}C$), the extracted electrical parameter values of characteristics were rises by increased temperature variations according to the forward and reverse bias.

  • PDF

The torsional buckling analysis for cylindrical shell with material non-homogeneity in thickness direction under impulsive loading

  • Sofiyev, A.H.
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.231-236
    • /
    • 2005
  • This study considers the buckling of orthotropic cylindrical thin shells with material nonhomogeneity in the thickness direction, under torsion, which is a power function of time. The dynamic stability and compatibility equations are obtained first. Applying Galerkin's method then applying Ritz type variational method to these equations and taking the large values of loading parameters into consideration, analytic solutions are obtained for critical parameter values. Using those results, the effects of the periodic and power variations of Young's moduli and density, ratio of Young's moduli variations, loading parameters variations and the power of time in the torsional load expression variations are studied via pertinent computations. It is concluded that all these factors contribute to appreciable effects on the critical parameters of the problem in question.

신장률 변화에 따른 초탄성 재료의 비선형 재료모델 비교 연구 (Comparative Study on the Nonlinear Material Model of HyperElastic Material Due to Variations in the Stretch Ratio)

  • 이강수;기민석;박병재
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.253-260
    • /
    • 2018
  • Recently, the application of non-steel materials in ships and offshore plants is increasing because of the development of various nonlinear materials and the improvement of performance. Especially, hyper-elastic materials, which have a nonlinear stress-strain relationship, are used mainly in marine plant structures or ships where impact relaxation, vibration suppression, and elasticity are required, while elasticity must be maintained, even under high strain conditions. In order to simulate and evaluate the behavior of the hyperelastic material, it is very important to select an appropriate material model according to the strain of the material. This study focused on the selection of material models for hyperelastic materials, such as rubber used in the marine and offshore fields. Tension and compression tests and finite element simulations were conducted to compare the accuracy of the nonlinear material models due to variations in the stretch ratio of hyper-elastic material. Material coefficients of nonlinear material models are determined based on the curve fitting of experimental data. The results of this study can be used to improve the reliability of nonlinear material models according to stretch ratio variation.

A Study on Dynamic Crack-Tip Fields in a Strain Softening Material

  • Jang, Seok-Ki;Xiankui Zhu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권4호
    • /
    • pp.494-502
    • /
    • 2003
  • The near-tip field of mode-I dynamic cracks steadily propagating in a strain softening material is investigated under plane strain conditions. The material is assumed to be incompressible and its deformation obeys the $J_2$ flow theory of plasticity. A power-law stress-strain relation with strain softening is adopted to account for the damage behavior of materials near the dynamic crack tip. By assuming that the stresses and strain have the same singularity at the crack tip. this paper obtains a fully continuous dynamic crack-tip field in the damage region. Results show that the stress and strain components the same logarithmic singularity of (In(R/r))$\delta$, and the angular variations of filed quantities are identical to those corresponding to the dynamic cracks in the elastic-perfectly plastic material.

스택온도 및 유량변화에 따른 PEMFC의 출력특성 연구 (A Study on Performance of PEMFC with Variations on Stack Temperature and Mass Flow Rate)

  • 박세준;최용성;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.140-140
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEM-type FCs system was integrated by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with variations on mass flow rate and stack temperature. The ranges of the variations are $20{\sim}70^{\circ}C$ on stack temperature and 1~8L/min on $H_2$ volume.

  • PDF

Breeding Resource Materials of Silkworm Bombyx mori L., Adaptive to Tropical Climates

  • P. Sudhakara Rao;R. K. Datta;K. M, Vijaya-Kumari;M. Ramesg Babu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제4권2호
    • /
    • pp.109-115
    • /
    • 2002
  • With the objective of selecting suitable breeding resource material, 10 polyvoltine and 10 bivoltine breeds were drawn from the germplasm collection of Central Sericultural Research and Training Institute, Mysore, and evaluated for 3 seasons comprising one year (6 trials). Data were collected on seven traits of economic importance such as fecundity, pupation rate, cocoon yield, cocoon weight, cocoon shell weight, cocoon shell ratio and filament length, and statistically analysed with two-way classification, Joint scoring method and evaluation index. Significant seasonal variations (P < 0.01) were observed in both polyvoltine and bivoltine breeds. Polyvoltines BL27, BL36 and BL54 and bivoltines CSR2, CSR4 and Daizo scored highest ranking values in all the three methods. Hybridization was initiated based on larval markings and cocoon shapes. Seasonal variations were discussed.

Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium

  • Heydari, Abbas;Shariati, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.737-748
    • /
    • 2018
  • The current study presents a new technique in the framework of the nonlocal elasticity theory for a comprehensive buckling analysis of Euler-Bernoulli nano-beams made up of bidirectional functionally graded material (BDFGM). The mechanical properties are considered by exponential and arbitrary variations for axial and transverse directions, respectively. The various circumstances including tapering, resting on two-parameter elastic foundation, step-wise or continuous variations of axial loading, various shapes of sections with various distribution laws of mechanical properties and various boundary conditions like the multi-span beams are taken into account. As far as we know, for the first time in the current work, the buckling analyses of BDFGM nano-beams are carried out under mentioned circumstances. The critical buckling loads and mode shapes are calculated by using energy method and a new technique based on calculus of variations and collocation method. Fast convergence and excellent agreement with the known data in literature, wherever possible, presents the efficiency of proposed technique. The effects of boundary conditions, material and taper constants, foundation moduli, variable axial compression and small-scale of nano-beam on the buckling loads and mode shapes are investigated. Moreover the analytical solutions, for the simpler cases are provided in appendices.

Zn-Pr-Co-Cr-Er 산화물계 바리스터의 써지 스트레스에 대한 전기적 안정성에 미치는 소결온도의 영향 (Effect of Sintering Temperature on Electrical Stability against Surge Stress of Zn-Pr-Co-Cr-Er Oxides-based Varistors)

  • 남춘우;박종아;유대훈
    • 한국전기전자재료학회논문지
    • /
    • 제17권11호
    • /
    • pp.1167-1173
    • /
    • 2004
  • This paper reports the variations of varistor voltage, nonlinear exponent, leakage current, and dissipation factor against surge stress of ZnO-P $r_{6}$ $O_{11}$-CoO-C $r_2$ $O_3$-E $r_2$ $O_3$(ZPCCE)-based varistors manufactured with the variations of sintering temperature. It was found that the variations of electrical parameters against surge stressing current of 100 A/$\textrm{cm}^2$(8x20 ${\mu}\textrm{s}$) is not so large under the surge stress of 700 times. Among varistors, specially the varistor sintered at 134$0^{\circ}C$ exhibited the smallest variations, with %$\Delta$ $V_{lmA}$=+0.23%, %$\Delta$$\alpha$=+0.23%, %$\Delta$ $I_{L}$=0%, %$\Delta$tan$\delta$=-6.94%. The clamping voltage ratio( $V_{c}$/ $V_{lmA}$) of all varistors was less than 2.2.2.2.2.2.2.

정극 활물질 Li(Cr0.4Mn0.6)O2의 충ㆍ방전 특성 (Charge-discharge Properties of Positive Active Material Li(Cr0.4Mn0.6)O2)

  • 위성동;정인성;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1085-1089
    • /
    • 2004
  • An impedance properties of the positive active material Li(Cr$_{0.4}$Mn$_{0.6}$)O$_2$ are measured by the changeable trend to the time. The charge-discharge capacities of 297 mAh(g)$^{-1}$ 175 mAh(g)$^{-1}$ are obtained by the made cell with the active material that the Cr was added to LiMnO$_2$ to prevent structural degradation of an electrode active material with impedance of 75 Ω to get at an initial hour. Resultantly, these variations which the impedances enhanced continually, were not watched the impeditive variations as the results of the delay time that the positive thin films and the references have been soaked all together in the solution of electrolyte of 1M LiPF$_{6}$ EC/DEC(l/2). Accordingly, it means an amount increased of the discharged capacities in the view of the results that the impeditive values were decreased are known already through a authorized paper.per.

Shaking table study of a 2/5 scale steel frame with new viscoelastic dampers

  • Chang, K.C.;Tsai, M.H.;Lai, M.L.
    • Structural Engineering and Mechanics
    • /
    • 제11권3호
    • /
    • pp.273-286
    • /
    • 2001
  • Viscoelastic (VE) dampers have shown to be capable of providing structures with considerable additional damping to reduce the dynamic response of structures. However, the VE material appears to be sensitive to the variations in ambient temperature and vibration frequency. To minimize these effects, a new VE material has been developed. This new material shows less sensitivity to variations in vibration frequency and temperature. However, it is highly dependent on the shear strain. Experimental studies on the seismic behavior of a 2/5 scale five-story steel frame with these new VE dampers have been carried out. Test results show that the structural response can be effectively reduced due to the added stiffness and damping provided by the new type of VE dampers under both mild and strong earthquake ground motions. In addition, analytical studies have been carried out to describe the strain-dependent behavior of the VE damper. The dynamic properties and hysteresis behavior of the dampers can be simulated by a simple bilinear model based on the equivalent dissipated energy principle proposed in this study.