• Title/Summary/Keyword: material tests

Search Result 3,863, Processing Time 0.028 seconds

A Study on the Conventional Liquefaction Analysis and Application to Korean Liquefaction Hazard Zones (기존의 액상화 평가기법 밀 그 적용성에 관한 연구)

  • 박인준;신윤섭;최재순;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.431-438
    • /
    • 1999
  • An assessment of liquefaction potential is made in principle by comparing the shear stress induced by earthquake to the liquefaction strength of the soil. In this study, a modified method based on Seed and Idriss theory is developed for evaluating liquefaction potential. The shear stress in the ground can be evaluated with seismic response analysis and the liquefaction strength of the soil can be investigated by using cyclic triaxial tests. The cyclic triaxial tests are conducted in two different conditions in order to investigate the factors affecting liquefaction strength such as cyclic shear stress amplitude and relative density. And performance of the modified method in practical examples is demonstrated by applying it to liquefaction analysis of artificial zones with dimensions and material properties similar to those in a typical field. From the result, the modified method for assessing liquefaction potential can successfully evaluate the safety factor under moderate magnitude(M=6.5) of earthquake.

  • PDF

Reinforcing Effect of Waste Tires As Reinforcement Material (지반보강재로서 폐타이어의 보강 효과)

  • 윤여원;최경순;천성한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.827-832
    • /
    • 2003
  • This study presented the reinforcing effect of sands by using newly devised 3D Tirecell. Plate loading tests for sand were conducted for different relative density and number of reinforced layers. From the tests, the ultimate bearing capacity of reinforced sand increased with increasing relative densities. The effect of reinforced layers with 0.4B interval is limited to 2 layers and further reinforcing effects can not be obtained beyond 3 layers. Especially the bearing capacity increased remarkably at 1 layer of Tirecell reinforcement and the degree of increase was small for 1 layer to 2 layers increase of reinforcement. Test results show that the reinforcing effect of Tirecell is prominent compared with commercial geocell in the literature.

  • PDF

Characteristics of Vertical Stress Distribution in Soil according to the Relative Density of Sandy Soil in case of Surface Loading (지표면 재하시 사질토 지반의 상대밀도에 따른 지중 연직응력분포 특성)

  • 임종석;이인형;정원중
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.422-426
    • /
    • 2003
  • Model soil tank tests were conducted in sandy soil to investigate the effect of surcharge strip loads on vertical stress distribution in soil. A total number of 6 tests were performed using one loading plate and two relative density(55%, 65%). The soil was considered as an elastic material, while no friction was allowed between the wall and the soil. Measured stress values were compared to predictions defined by Frohlich, Boussinesq and Westergaard. The comparison of measured values and predictions used the ratio between the soil pressure and load value. Results of this study demonstrated that experimental values were generally larger than predictions. The Frohlich analysis provided the best prediction, while the Boussinesq analysis and Westergaard theory not presented a satisfactional result.

  • PDF

Shaking Table Tests of a 1/4-Scaled Steel Frame with Base Isolators (1/4축소 철골구조물을 이용한 건물 기초분리장치의 진동대실험)

  • 송영훈;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.39-48
    • /
    • 1997
  • New form of base isolators made of steel spring coated with both natural and artficial rubber were manufactured and tested for material properties. Shaking table experiments were performed using a model structure attached with the bearings. The model structure used in the test is a 1/4 scaled steel structure, and earthquake records were used to check the lateral and vertical stability and effectiveness of the isolators. According to the results all three types of isolators turned out to be effective in reducing the acceleration induced by the earthquake vibration.

  • PDF

Mechanical behaviour of a syntactic foam/glass fibre composite sandwich: experimental results

  • Papa, Enrico;Corigliano, Alberto;Rizzi, Egidio
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.169-188
    • /
    • 2001
  • This note presents the main results of an experimental investigation into the mechanical behaviour of a composite sandwich conceived as a lightweight material for naval engineering applications. The sandwich structure is formed by a three-dimensional glass fibre/polymer matrix fabric with transverse piles interconnecting the skins; the core is filled with a polymer matrix/glass microspheres syntactic foam; additional Glass Fibre Reinforced Plastics extra-skins are laminated on the external facings of the filled fabric. The main features of the experimental tests on syntactic foam, skins and sandwich panels are presented and discussed, with focus on both in-plane and out-of-plane responses. This work is part of a broader research investigation aimed at a complete characterisation, both experimental and numerical, of the complex mechanical behaviour of this composite sandwich.

Strength Modeling of Mechanical Strength of Polyolefin Fiber Reinforced Cementitious Composites

  • Sakthievel, P.B.;Ravichandran, A.;Alagumurthi, N.
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.2
    • /
    • pp.41-46
    • /
    • 2014
  • RCC consumes large quantities of natural resources like gravel stone and steel, and there is a need to investigate on an innovative material that utilizes limited quantities of natural resources but should have good mechanical strength. This study deals with the experimental investigation of strength evaluation of cementitious composites reinforced with polyolefin fibers from 0% to 2.5% (with interval of 0.5%), namely Polyolefin Fiber Reinforced Cementitious Composites (PL-FRCC) and developing statistical regression models for compressive strength, splitting-tensile strength, flexural strength and impact strength of PL-FRCC. Paired t-tests (for each PL fiber percentage 0 to 2.5%) bring out that there is significant difference in compressive and splitting-tensile strength when curing periods (3, 7, 28 days) are varied. Also, a strong relationship exists between the compressive and flexural strength of PL-FRCC. The proposed mathematical models developed in this study will be helpful to ascertain the mechanical strength of FRCC, especially, when the fiber reinforcing index is varied.

Finite Element Analysis of Superplastic Forming Considering Grain Growth-II. Superplastic Behavior of AZ31 Alloy (결정립 성장을 고려한 초소성 성형공정의 유한요소해석-II. AZ31 합금의초소성 거동)

  • Kim, Y.G.;Kim, S.H.;Kwon, Y.N.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.403-411
    • /
    • 2012
  • The aim of this study was to predict the results of superplastic forming on magnesium alloy, by considering the grain growth using numerical simulations. Superplastic behavior of AZ31 alloy was investigated through a set of uniaxial tensile tests that cover the forming temperatures ranges from 375 to $450^{\circ}C$. All the material parameters in the model, which consists of a constitutive equation and a grain growth equation, were determined. The model was used in the finite element analysis for uniaxial tensile tests and superplastic blow forming, through a user-subroutine available within ABAQUS. From this study, the effect of grain growth during forming was evaluated. The results show that it is essential to include the effect of grain growth in predicting the behavior during superplastic forming of this magnesium alloy.

Fatigue Assessment of Load-carrying Asymmetric Double Bevel Cruciform Welded Joints using Structural Stress Approach (구조응력을 이용한 하중 전달형 십자 양면 비대칭 필렛 용접 시험편의 피로강도 평가)

  • Kim, Seong-Min;Kim, Young-Nam;Lee, Seung-Hyun;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.86-91
    • /
    • 2012
  • Fatigue tests and analyses were carried out to investigate fatigue strength and crack initiation point of load-carrying asymmetric double bevel cruciform welded joints. Mesh-insensitive structural stress approach was adopted to estimate high precise fatigue life and crack initiation point. Two different case material and weld shape were considered in this study. Results of fatigue tests and analyses were compared and discussed in consideration of applicability of structural stress approach as the reliable fatigue assessment method of cruciform welded joints.

FEA Simulations and Tests of Rubber Insulator for Truck Suspension

  • Hur, Shin;Woo, Chang Su
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.303-308
    • /
    • 2017
  • In this study, finite element modeling and material property tests are performed for the finite element analysis of rubber isolator parts which support the engine and isolate the vibration. As a result of the P direction analysis of the rubber isolator parts, the static stiffness in the P direction was 44.2 kg/mm, which is well within the error of 5% as compared with the test result of 46.1 kg/mm. The static stiffness of the rubber isolator parts in the Q direction was calculated to be 7.9 kg/mm, which is comparable to the test result of 8.6 kg/mm, with an error of less than 8%. As a result of the analysis on the Z direction, the static stiffness was calculated as 57.7 kg/mm, and the test results were not available. Through this study, it is expected that the time and cost for prototype development can be reduced through nonlinear finite element analysis for rubber isolator parts.

Effects of Process Parameters owl the Tube Hydroformability (하이드로포밍 성형성에 미치는 공정인자 영향도 해석)

  • 김봉준;김정운;문영훈
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2002
  • The purpose of the present paper is to investigate the effect of Process parameters such as internal pressure, amount of axial feeding, and frictional condition between the die and the material on the tube hydro-formability. For carbon steel tubes(STKM 12A, STBH 410 and SPS 290), simple bulging, circular bulging and Tee-fitting tests are performed to evaluate the hydro-formability of these materials which is determined by deformation characteristics such as thickness distribution, forming height and branch dome shape. The formabilities obtained from these tests are analysed and compared with the results of the numerical simulation.