• Title/Summary/Keyword: material tests

Search Result 3,862, Processing Time 0.097 seconds

Engineering Characteristics and Pilot Test of Pohang Area's Tertiary Mudstone as Earth Filling Material (성토매립재로서 포항지역 제3기층 이암의 공학적 특성 및 시험시공)

  • Lee, Kyu-Hwan;Jung, Dae-Suck;Kim, Sung-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.63-73
    • /
    • 2010
  • The supply of high quality filling materials for pavement base course or reclamation is getting harder. So, there is an attempt to use soft mudstones as an earth filling material in Pohang area. But the engineering properties of the soil deposit placed with soft mudstones have not been clearly evaluated yet. We investigated the water absorption and softening, the slaking behavior and the geological mechanism in order to obtain an effective way of estimating the magnitude of land subsidence and the reduction of soil strength. The applicability of soft mudstones is examined by a variety of laboratory tests and pilot-scale field tests. In addition, it is necessary to consider the environmental characteristics of soft mudstones as a reclaiming material, Consequently, the results from the current study can be used to prevent any construction defects due to the careless use of soft mudstones for the pavement base course or reclamation.

Drag Torque Prediction for Automotive Wheel Bearing Seals Considering Viscoelastic as Well as Hyperelastic Material Properties (초탄성 및 점탄성 물성을 고려한 자동차용 휠 베어링 실의 드래그 토크 예측)

  • Lee, Seungpyo
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.267-273
    • /
    • 2019
  • Wheel bearings are important automotive parts that bear the vehicle weight and translate rotation motion; in addition, their seals are components that prevent grease leakage and foreign material from entering from the outside of the bearings. Recently, as the need for electric vehicles and eco-friendly vehicles has been emerging, the reduction in fuel consumption and $CO_2$ emissions are becoming the most important issues for automobile manufacturers. In the case of wheel bearings, seals are a key part of drag torque. In this study, we investigate the prediction of the drag torque taking into consideration the hyperelastic and viscoelastic material properties of automotive wheel bearing seals. Numerical analysis based on the finite element method is conducted for the deformation analyses of the seals. To improve the reliability of the rubber seal analysis, three types of rubber material properties are considered, and analysis is conducted using the hyperelastic material properties. Viscoelastic material property tests are also conducted. Deformation analysis considering the hyperelastic and viscoelastic material properties is performed, and the effects of the viscoelastic material properties are compared with the results obtained by the consideration of the hyperelastic material properties. As a result of these analyses, the drag torque is 0.29 Nm when the hyperelastic characteristics are taken into account, and the drag torque is 0.27 Nm when both the hyperelastic and viscoelastic characteristics are taken into account. Therefore, it is determined that the analysis considering both hyperelastic and viscoelastic characteristics must be performed because of its reliability in predicting the drag torque of the rubber seals.

Module-type bicycle accessory design research focusing on bicycle user convenience by applying S Foam Core (S Foam Core를 적용한 자전거 사용 편의성에 중점을 둔 모듈형 자전거 액세서리 디자인 연구)

  • Park, Yu-Jin;Song, Sung-il;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.1
    • /
    • pp.32-38
    • /
    • 2019
  • Carbon material was used for the new module-type bicycle accessory focusing on the user convenience through service design methodology. In the case of using the existing carbon material, the impact could not be endured while riding the bicycle and there was the case of breaking. To resolve this kind of problem, the new type of material (S Foam Core material) was applied. The intensity, twist intensity, shock absorbing power, and vibration were measured for the existing carbon material and the S Foam Core material. As a result, the S Foam Core material showed more outstanding results than the existing carbon material. This study produced prototype with the S Foam Core material to verify the performance through tests and report the result.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험)

  • Kim, Nam-Sik;Lee, Ji-Ho;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.35-43
    • /
    • 2004
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. In this study, compressive strength tests are conducted to analyze the equivalent modulus ratio of micro-concrete to normal-concrete. Then, equivalent modulus ratios are divided into multi-phase damage levels, which are basically dependent on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent multi-phase similitude law based on seismic damage levels, is developed. Test specimens, consisted of prototype structures and 1/5 scaled models as a reinforced concrete column, were designed and fabricated based on the equivalent modulus ratios already defined. Finally quasistatic and pseudodynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. It is confirmed that the equivalent multi-phase similitude law proposed in this study could be suitable for seismic performance tests on small-scale models.

Development of a Drainage System to Mitigate Moisture Damage for Bridge Deck Pavements (교면포장의 수분손상 저감을 위한 체류수 배수공법 개발)

  • Lee, Hyun-Jong;Kim, Hyung-Bae;Seo, Jae-Woon
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.129-140
    • /
    • 2007
  • A major purpose of this study is to develop a drainage system that can quickly drain water penetrated into pavement layers to mitigate pot holes which is one of the major distress types in bridge deck pavements. This system can be established by applying a thin drainage layer between waterproof and pavement layers. The most important elements for this system are the performance of waterproof layer and construction technique for the thin drainage layer. The porous asphalt mix with the maximum aggregate size of 10mm is first developed based on the porous asphalt mix design guide proposed by NCAT, and various physical and mechanical tests are performed to confirm that the porous mix satisfies all the specification requirements. In addition, a series of laboratory tests including low-temperature bending and bonding strength tests for the MMA(Methyl Methacrylate) type of waterproofing material. It is observed from the tests that the MMA material satisfies all the specification requirements. To evaluate the Reld performance of the drainage system, a field study has been conducted on a relatively small size bridge. The QC/QA tests are conducted on the both waterproofing and pavement materials. It has been found that the drainage system works well to drain the water penetrated into the pavement layers.

  • PDF

Development and Verification of Large Triaxial Testing System for Dynamic Properties of Granular Materials (조립재료 동적물성 산정을 위한 대형삼축압축시험장비 구축 및 검증)

  • Lee, Sung-Jin;Kim, Yun-Ki;Choo, Yun-Wook;Lee, Sei-Hyun;Kang, Tae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.5-17
    • /
    • 2010
  • Coarse granular material is used as important fill material in most of large embankments such as railway, road, dam and so on. Therefore, the accurate design parameters of the coarse granular material are necessarily required in design and construction. The behavior of the coarse granular material was not well understood because of the lack of large testing equipment capable of coarse granular material. A large triaxial testing system was developed in this research, capable of large specimens of 500 mm, 300 mm and 150 mm in diameter. In the new large triaxial testing system, the load cell is installed inside the triaxial cell and axial displacement is measured locally on a specimen in order to improve control and measurement in small strain level. Urethane specimens of 300 mm and 50 mm in diameter were prepared. The large triaxial tests were performed on the 300 mm diameter urethane specimens while RC/TS and impact echo tests on the 50 mm diameter urethane specimens to verify this testing system. In this verification test results, we could ascertain the reasonable test results of the KRRI large triaxial testing system.

Comparison of Shear Strength of Coarse Materials Measured in Large Direct Shear and Large Triaxial Shear Tests (대형 직접전단시험과 대형 삼축압축시험에 의한 조립재료의 전단강도 비교)

  • Seo, Minwoo;Kim, Bumjoo;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.25-34
    • /
    • 2009
  • Since the particle sizes of the coarse materials used in dam or harbor constructions are much larger than those of typical soils, it is desirable that large shear testing apparatuses are used when performing shear tests on the coarse materials to obtain as accurate results as possible. Two large-scale shear testing apparatuses, large direct shear testing apparatus and large triaxial shear testing apparatus, are commonly used. Currently in Korea, however, there have not been many cases in which shear tests were done using the large apparatus due to mainly difficulties in manufacturing, diffusing, and operating them. In present study, both large direct shear tests and large triaxial shear tests were performed on the coarse materials, which are used as dam fill materials, for 6 test cases in which particle sizes, specimen sizes, vertical pressure (confining pressure) conditions were little different, and then, the shear strength characteristics of the materials were compared with the two different shear tests. The test results showed that, by the Mohr-Coulomb failure criterion, overall the shear strength obtained by the large direct shear tests was larger than that by the large triaxial shear tests. Moreover, the shear strength under the normal stress of 1,000 kPa was about 10 to 70% larger for the large direct shear tests than for the large triaxial shear tests, revealing the larger differences in the coarse materials, compared to typical soils.

  • PDF

Effects of Copper and Copper-Alloy on Friction and Wear Characteristics of Low-Steel Friction Material (로우스틸 마찰재의 마찰 및 마모특성에 미치는 구리계 재료의 영향)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Choi, Sungwoo;Lee, Heeok
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.207-214
    • /
    • 2020
  • In this study, we investigated the effects of copper and copper-alloy on the frictional and wear properties of low-steel friction material. The proportions of copper and copper-alloy in the brake friction materials used in passenger cars are very high (approximately 5-20% weight), and these materials have significant effects on friction and wear characteristics. In this study, the effects of cupric ingredients, such as the copper fiber and brass fiber, are investigated using the friction materials based on commercial formulations. After the copper and brass fibers from the same formulation were removed, the frictional and wear characteristics were evaluated to determine the influence of the copper and copper-alloy. We evaluated the frictional and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The results show that the friction material containing copper and brass fibers have excellent frictional stability and a low wear rate compared to the friction material that does not contain copper and brass fibers. These results are attributed to the excellent ductility, moderate melting point, high strength, and excellent thermal conductivity of copper and copper-alloy. We analyzed the surfaces of the friction materials before and after the performing the friction tests using a scanning electron microscope-energy dispersive X-ray spectroscope, confocal microscope, and roughness tester to verify the frictional behavior of copper and copper-alloy. In future studies, it will be applied to the development of copper-free friction materials based on the results of this study.

Microstructure and Liquid Al Erosion Property of Tribaloy T-800 Coating Material Manufactured by Laser Cladding Process (Laser Cladding 공정으로 제조된 Tribaloy T-800 코팅 소재의 미세조직 및 용융 Al 침식 특성)

  • Kim, Kyoung-Wook;Ham, Gi-Su;Park, Sun-Hong;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.210-218
    • /
    • 2020
  • A T-800 (Co-Mo-Cr) coating material is fabricated using Co-Mo-Cr powder feedstock and laser cladding. The microstructure and melted Al erosion properties of the laser-cladded T-800 coating material are investigated. The Al erosion properties of the HVOF-sprayed MoB-CoCr and bulk T-800 material are also examined and compared with the laser-cladded T-800 coating material. Co and lave phases (Co2MoCr and Co3Mo2Si) are detected in both the laser-cladded T-800 coating and the bulk T-800 materials. However, the sizes of the lave phases are measured as 7.9 ㎛ and 60.6 ㎛ for the laser-cladded and bulk T-800 materials, respectively. After the Al erosion tests, the erosion layer thicknesses of the three materials are measured as 91.50 ㎛ (HVOF MoB-CoCr coating), 204.83 ㎛ (laser cladded T-800), and 226.33 ㎛ (bulk T-800). In the HVOF MoB-CoCr coating material, coarse cracks and delamination of the coating layer are observed. On the other hand, no cracks or local delamination of the coating layer are detected in the laser T-800 material even after the Al erosion test. Based on the above results, the authors discuss the appropriate material and process that could replace conventional bulk T-800 materials used as molten Al pots.

A Study on Expansion and Strength Characteristics of Material for Emergency Restoration in Ground Cavity (지반공동 긴급복구 재료의 팽창 및 강도특성에 관한 연구)

  • Han, Jin-Gyu;Ryu, Yong-Sun;Kim, Dongwook;Park, Jeong-Jun;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • In this study, the expansion and compressive strength tests of emergency restoration material were carried out to restore cavity causing ground subsidence. The expansion and compressive strength characteristics according to component ratio of main material - hardener and mix proportion of blowing agent - accelerator were analyzed based on the test results. As a result of the relationship of curing time - expansion ratio analyses, it confirmed that expansion ratio decreased with reduced curing time regardless of mix proportion of blowing agent - accelerator in main material, if component ratio of hardener increased. This means that component ratio of the main material - hardener had greatly affected the expansion ratio. The compressive strength characteristics of emergency restoration material confirmed that strength was affected by mix proportion of blowing agent - accelerator. Therefore, it is necessary to apply reasonable component ratio and mix proportion to consider the required injection time, expansion ratio and strength of restoration material, when emergency restoration in ground cavity is required.