• Title/Summary/Keyword: material tests

Search Result 3,862, Processing Time 0.028 seconds

Development of Standard Operating Procedures (SOPs), Standardization, TLC and HPTLC Fingerprinting of a Polyherbal Unani Formulation

  • Naaz, Arjumand;Viquar, Uzma;Naikodi, Mohammad Abdul Rasheed;Siddiqui, Javed Inam;Zakir, Mohammad;Kazmi, Munawwar Husain;Minhajuddin, Ahmed
    • CELLMED
    • /
    • v.11 no.4
    • /
    • pp.21.1-21.9
    • /
    • 2021
  • Background: Unani System of Medicine (USM) has its origin to Greece. To ensure and develop the quality, authenticity of Unani drugs, standardization on modern analytical parameter is essential requirement for drugs. Objectives: The aimed of the present study was to develop a standard profile of "Qurṣ-e-Mafasil" by systematic study through authenticated ingredients, pharmacognostic identification followed by physicochemical, TLC, HPTLC fingerprinting analysis as per standard protocol. Material and Methods: In this study three batches of "Qurṣ-e-Mafasil" QM were prepared by standard method as per UPI had been followed by organoleptic properties of formulation such as appearance, color, odor, taste. Powder Microscopy and physicochemical studies were carried out such as Uniformity of weight, Friability, Disintegration time, hardness, LOD, ash vales and extractive values in like aqueous, alcohol & hexane. Further qualitative tests such as Thin-Layer Chromatography (TLC), and High-Performance Thin Layer Chromatography (HPTLC) studies were also carried out to develop fingerprint pattern of the alcoholic solvent extract of QM. Phytochemical screening was carried out in different solvent extracts such as alcoholic, aqueous and chloroform extracts to detect the presence phytoconstituents in the formulation QM. Heavy metals, Microbial Load Contamination and pesticidal residues were also determined. Results: Qurṣ-e-Mafasil showed tablet-like appearance, light brown colour, mild pungent odour and acrid taste. Uniformity of weight (mg), friability (rpm), and hardness (kg/cm) and disintegration time was ranged between (500 to 503), (0.0340 to 0.038), (8.40 to 8.67) and (4-5 minutes) respectively for the three batches. Loss in weight on drying at 105℃ was ranged between (8.3425 to 8.7346). Extracted values were calculated in distilled water ranged between (30.9091 to 31.4358), hexane (1.1419 to 1.4281), and alcohol (3.3352 to 3.3962). The ash values recorded were ranged between (3.7336 to 3.8378), and acid insoluble ash (0.5859 to 0.6112).

Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct (페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가)

  • Chang-Young Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.89-96
    • /
    • 2023
  • In this paper, a ferrosilicon by-product was evaluated to confirm the feasibility of recycling it as supplementary cementitious material of ordinary Portland cement in concrete. Three different levels of replacement ratio (10 %, 20 % and 30 % of total binder) were applied to find which is the most beneficial to be used as a binder. Ferrosilicon concrete was initially assessed at setting time and compressive strength. Durability was evaluated by the resistance to chloride penetration test(RCPT) and alkali-silica reaction(ASR) with a comparison to silica fume concrete due to their similarity in chemical composition. The porosimetry and X-ray diffraction analysis along with energy dispersive X-ray spectroscopy give information on the microstructural characteristics of the ferrosilicon concrete. It was found that 10 % ferrosilicon concrete has higher strength while 20 %, 30 % have lower strength than OPC concrete. However, chemical resistance to chloride attack is higher when replacement is increased. Compared to silica fume, the durability of ferrosilicon might be less efficient however, it is obviously beneficial than OPC. High SiO2 content in ferrosilicon results in producing more C-S-H gel which could make denser pore structure. Most of the risk of alkali silica reaction to silicate binders through length change tests was less than 0.2 %, and both mortar using ferrosilicon and silica fume showed better resistance to alkali silica reaction as the substitution rate increased.Reuse of industrial waste rather than producing highly refined additives might reduce environmental load during manufacture and save costs.

Application of Electrokinetic Injection Method for Increasing Shear Strength of Low Permeable Soil (저투수성 지반의 전단강도 증가를 위한 동전기 주입 기법의 적용성)

  • Kim Soo-Sam;Han Sang-Jae;Kim Ki-Nyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.5-12
    • /
    • 2006
  • In this study a series of tests (bench scale test) are carried out for increasing the strength of clayey soil by EK-Injection method. In addition, the effects of strength increase in the treated sample are measured by operating the vane shear test device during 25 days at 5 days intervals in order to estimate the effect of ground improvement caused by diffusion. Also, the effects of strength increase in the treated sample are measured by operating the vane shear test device to estimate the effect by treatment durations (5, 10, 15, 20, 25). The test results show that the strength increase was developed approximately 2 to 7 times in comparison to initial shear strength, and outstanding strenfth increase was created as much as 7 times while injecting the sodium silicate and phosphoric acid in anolyte and catholyte. In addition, the measured shear strength with the influence of diffusion and reduction of water-content had a tendency to converge in constant value in proportion to elapsed time. As a result of this study, strength increment developed by the influence of EK-Injection and diffusion rather than the reduction of water-content was 1000% high on average. In case of changes of treatment duration, strength increment developed by the influence of treatment durations rather than the reduction of water-content was 3 to 4 times high on average.

Characteristics of Deformation and Shear Strength of Parallel Grading Coarse-grained Materials Using Large Triaxial Test Equipment (대형삼축시험에 의한 상사입도 조립재료의 변형 및 전단강도 특성)

  • Jin, Guang-Ri;Snin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.57-67
    • /
    • 2009
  • Along with the advanced construction technologies, the maximum size of coarse aggregate used for dam construction ranges from several cm to 1m. Testing the original gradation samples is not only expensive but also causes many technical difficulties. Generally, indoor tests are performed on the samples with the parallel grading method after which the results are applied to the design and interpretation of the actual geotechnical structure. In order to anticipate the exact behavior characteristics for the geotechnical structure, it is necessary to understand the changes in the shear behavior. In this study, the Large Triaxial Test was performed on the parallel grading method samples that were restructured with river bed sand-gravel, with a different maximum size, which is the material that was used to construct Dam B in Korea. And the Stress - Strain characteristics of the parallel grading method samples and the characteristics of the shear strength were compared and analyzed. In the test results, the coarse-grained showed strain softening and expansion behavior of the volume, which became more obvious as the maximum size increased. The internal angle of friction and the shear strength appeared to increase as the maximum size of the parallel grading method sample increased.

Estimation of the Mechanical Properties of the Concrete Tunnel Lining by Drilling Resistance Test (천공저항시험에 의한 콘크리트 터널라이닝의 역학적 특성 추정)

  • Choi, Soon-Wook;Sung, Yun-Chang;Cheong, Ho-Seop;Chang, Soo-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.87-98
    • /
    • 2007
  • For the quick rehabilitation of a fire-damaged tunnel structure, it is the most important procedure to investigate the fire-induced damaged zone rapidly. This study aims to propose a new drilling resistance testing method by which mechanical properties of tunnel concrete lining altered by high temperature can be estimated easily and continuously. Especially, it alms to derive the relationships to estimate mechanical properties of mortar and concrete materials from drilling parameters. To obtain the optimum testing condition, a series of drilling resistance tests were carried out for mortar specimens. When the rotation per minute of drill bit, tile penetration rate and the bit diameter were 1,300 rpm, 1.40 mm/sec, and 10 mm respectively, the deviation of measured drilling resistance forces was minimal. Under the optimum testing condition, the relationships between drilling resistance and mechanical properties of mortar specimens were shown to be very favorable. The concept of replacing a mean value of resistance farces measured during drilling with the resistance energy was proposed to consider the effects of randomly distributed aggregates inside a concrete material on drilling resistance. When the concept was applied to concrete materials, a favorable relationship between actual compressive strength and drilling resistance energy was also successfully derived.

Strength Anisotropy through Artificial Weak Plane of Mudstone (인공연약면을 따른 이암의 강도이방성에 관한 연구)

  • Lee, Young-Huy;Jeong, Ghang-Bok
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.111-120
    • /
    • 2008
  • The characteristic of induced anisotropy is investigated in this study for the Pohang mudstone involving the cut plane discontinuity. The uniaxial and triaxial compression tests are performed for anisotropic rocks with artificial joint to look into anisotropic strength characteristics. Both the uniaxial compressive strength and triaxial compressive strength show the lowest value at the angle of cut plane, ${\beta}=30^{\circ}$ and the shoulder type of anisotropy is obtained. Anisotropy ratio (Rc) in uniaxial compression measures 9.0, whereas Rc=1.29-1.98 in triaxial compression is appeared. A series of analyses are made with the test results to derive the suitable parameter values when it is applied to the Ramamurthy (1985) failure criterion. The result of uniaxial compression test is analyzed by introducing the n-index into Ramamurthy failure criterion. The result shows that, n=l is suitable for ${\beta}=0^{\circ}{\sim}30^{\circ}$ and n=3 is suitable for ${\beta}=30^{\circ}{\sim}90^{\circ}$. To analyze the result of triaxial compression test by Ramamurthy failure criterion, anisotropy ratio in uniaxial compression test is added to Ramamurthy's equation and material constants are estimated by modified Ramamurthy's equation. When these values are applied back to Ramamurthy failure criterion, the predicted values are well fitted to the test results. And strength anisotropy for failure criteria of Jaeger (1960), McLamore & Gray (1967) and Hoek & Brown (1980) are also investigated.

An Investigation on the Long Term Durability of High-strength Shotcrete Using Field and Combined Deterioration Test (현장실험과 복합열화시험을 통한 고강도 숏크리트의 장기내구성 검토)

  • Ma, Sang-Joon;Choi, Jae-Seok;Ahn, Kyung-Chul;Kim, Sun-Myung;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.77-91
    • /
    • 2006
  • Domestic practices in shotcrete use have developed in many respects even now, but it still has issues about material, construction, quality standard and so on. In overseas, the construction using high strength shotcrete with $39.2{\sim}58.8 MPa$ of compressive strength is becoming common based on the shotcrete technology of high strength and durability. However, domestic shotcrete design strength is low at around 20.6 MPa of compressive strength and a long term durability is also insufficient. In this paper, field tests using high-quality additives and accelerators were performed to obtain the improvement of shotcrete strength and EFNARC standard was used to evaluate the field test results. In addition, deterioration test combined with the freezing-thawing and carbonation was also performed in order to investigate a long-term durability of high-strength shotcrete. As a result of the field test, the promotion ratio of early strength was $90{\sim}97%$ in case of using alkali-free accelerators. And the compressive strength of the shotcrete using Micro-silica fume was $45.2{\sim}55.8MPa$ and flexible strength was $5.01{\sim}6.66MPa$, so the promotion ratio of strength was $37{\sim}79%$ and $17{\sim}61%$ respectively. The promotion effect of strength by silica fine additives ratio of $7.5{\sim}10%$ for cement mass was much superior to the other cases. It was especially examined that using Micro-silica fume reduced deterioration due to mixed steel fiber and improved a long-term durability of shotcrete.

Variation of Earth Pressure Acting on Cut-and-Cover Tunnel Lining with Settlement of Backfill (되메움토의 침하에 따른 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista F.E.;Park Lee-Keun;Im Jong-Chul;Lee Young-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.27-40
    • /
    • 2006
  • Damage of cut-and-cover tunnel lining can be attributed to physical and mechanical factors. Physical factors include material property, reinforcement corrosion, etc. while mechanical factors include underground water pressure, vehicle loads, etc. This study is limited to the modeling of rigid circular cut and cover tunnel constructed at a depth of $1.0{\sim}1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. In this study, only damages due to mechanical factors in the form of additional loads were considered. Among the different types of additional, excessive earth pressure acting on the cut-and-cover tunnel lining is considered as one of the major factors that induce deformation and damage of tunnels after the construction is completed. Excessive earth pressure may be attributed to insufficient compaction, consolidation due to self-weight of backfill soil, precipitation and vibration caused by traffic. Laboratory tunnel model tests were performed in order to determine the earth pressure acting on the tunnel lining and to investigate the applicability of existing earth pressure formulas. Based on the difference in the monitored and computed earth pressure, a factor of safety was recommended. Soil deformation mechanism around the tunnel was also presented using the picture analysis method.

Evaluation on Adiabatic Property for Vehicular Sandwich Composite Structure (차체 구조용 샌드위치 복합소재 단열 특성 평가)

  • Lee Sang Jin;Oh Kyung Won;Jeong Jong Cheol;Kong Chang duk;Kim Jeong Seok;Cho Se Hyun
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Experimental investigation on heat transfer ratio was firstly performed with three types of sandwich panels such as the Carbon/Epoxy Skin-Aluminum Honeycomb and Balsa Core Sandwich Panel of 37mm thickness, the Carbon/Epoxy Aluminum Skin-Honeycomb Core Sandwich Panel of 57mm thickness (including insulator) and the Carbon/Epoxy Skin-Aluminum Honeycomb Core Sandwich Panel of 37mm thickness based on the KS F 2278:2003(Insulation test method of windows). In additional to this investigation, experimental tests were also done for evaluation of heat transportation ratio with the Aluminum Skin- Aluminium Honeycomb Sandwich Panels of 27mm and 35mm thickness, and Aluminum Skin-Foaming Aluminum Sandwich Panel of 27mm thickness by the KS F2277:2002 (Insulation measuring method of construction component-Calibration heat box method or protective heat box method). In this study, it was found that the larger net heat transfer cross sectional area between the skin and the sandwich core is given, the higher heat transportation ratio occurs. It was also found that the hybrid type insulation had better insulation characteristics compared to the non-hybrid type insulation.

A study on the asperity degradation of rock joint surfaces using rock-like material specimens (유사 암석 시편을 사용한 암석 절리면 돌출부 손상 연구)

  • Hong, Eun-Soo;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.303-314
    • /
    • 2009
  • Image analyses for sheared joint specimens are performed to study asperity degradation characteristics with respect to the roughness mobilization of rock joints. Four different types of joint specimens, which are made of high-strength gypsum materials, are prepared by replicating the three-dimensional roughness of rock joints. About twenty jointed rock shear tests are performed at various normal stress levels. The characteristic and scale of asperity degradation on the sheared joint specimens are analyzed using the digital image analysis technique. The results show that the asperity degradation characteristic mainly depends on the normal stress level and can be defined by asperity failure and wear. The asperity degradation develops significantly around the peak shear displacement and the average amount of degraded asperities remains constant with further displacement because of new degradation of small scale asperities. The shear strength results using high-strength gypsum materials can not fully represent physical properties of each mineral particles of asperities on the natural rock joint surface. However the results of this quantitative estimation for the relationship between the peak shear displacement and the asperity degradation suggest that the characterization of asperity degradation provides an important insight into mechanical characteristics and shear models of rock joints.