• Title/Summary/Keyword: material tests

Search Result 3,863, Processing Time 0.028 seconds

Modelling of aluminium foam sandwich panels

  • D'Alessandro, Vincenzo;Petrone, Giuseppe;De Rosa, Sergio;Franco, Francesco
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.615-636
    • /
    • 2014
  • Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich panels with an Alulight(R) foam core are studied. Experimental tests, in terms of frequency response function and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring the space of the eigenvectors.

Experimental study and FE analysis of tile roofs under simulated strong wind impact

  • Huang, Peng;Lin, Huatan;Hu, Feng;Gu, Ming
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.75-87
    • /
    • 2018
  • A large number of low-rise buildings experienced serious roof covering failures under strong wind while few suffered structural damage. Clay and concrete tiles are two main kinds of roof covering. For the tile roof system, few researches were carried out based on Finite Element (FE) analysis due to the difficulty in the simulation of the interface between the tiles and the roof sheathing (the bonding materials, foam or mortar). In this paper, the FE analysis of a single clay or concrete tile with foam-set or mortar-set were built with the interface simulated by the equivalent nonlinear springs based on the mechanical uplift and displacement tests, and they were expanded into the whole roof. A detailed wind tunnel test was carried out at Tongji University to acquire the wind loads on these two kinds of roof tiles, and then the test data were fed into the FE analysis. For the purpose of validation and calibration, the results of FE analysis were compared with the full-scale performance ofthe tile roofs under simulated strong wind impact through one-of-a-kind Wall of Wind (WoW) apparatus at Florida International University. The results are consistent with the WoW test that the roof of concrete tiles with mortar-set provided the highest resistance, and the material defects or improper construction practices are the key factors to induce the roof tiles' failure. Meanwhile, the staggered setting of concrete tiles would help develop an interlocking mechanism between the tiles and increase their resistance.

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

Structural Behavior of Bolted Lap-Joint Connection in the Pultruded FRP Structural Members (볼트로 겹침이음된 펄트루젼 복합재 접합부의 구조적 거동)

  • Lee, Young-Geun;Shin, Kwang-Yeoul;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • In this paper, we present the result of an experimental investigation pertaining to the structural behavior of bolted lap-joint connection of pultruded fiber reinforced plastic structural shapes. In the experimental investigation, in order to find the mechanical property of the material, tension and shear tests on the pultruded structural composite specimen are conducted prior to the investigation on the structural behavior of bolted lap-joint connection of the member. Based on the result, number of bolts, type of placement and location of bolt are determined to be a test variable. Three different types of experimental specimens are prepared. Tensile load is applied through the center of the specimen with lap-joint connection and the structural behavior and failure mode of the test specimens with respect to the tensile load increment are investigated. As a result, it is found that most of the failure mode at the lap-joint connection is shear failure mode. Consequently, it is also found that the data obtained through this experimental program could be used for the structure connection design as a basis.

Impact Behavior of Fiber/Metal Laminates (FMLs) under Low Velocity (섬유/금속 적층판의 저속 충격 거동)

  • Shi, Yu;Kim, Seung-Hyun;Kim, Byung-Sun;Song, Jong-Il
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • The Fiber/Metal Laminates (FMLs) have been developed as a new composite material for aerospace application to reduce weight and improve damage tolerance. In this study, firstly FMLs were manufactured and the tensile test was performed to investigate the mechanical properties of FMLs. Furthermore, impact behavior of the low velocity on FMLs which consisted of different types of aluminum or fiber/epoxy layers was tested by the drop weight impact tester based on the different impact energy conditions. The load-time and energy-time curves were employed to evaluate the impact performance of different specimens. Moreover, finite element analysis (FEA) was also performed to simulate the tensile test and impact behavior of FMLs under the same conditions with the tests and good agreements have been obtained between the FEA predictions and experimental results.

Application of Monkman-Grant Relationships to Type 316L(N) Stainless Steel (316L(N)스테인리스강의 Monkman-Grant 크리프 수명식의 적용성)

  • Kim, U-Gon;Kim, Dae-Hwan;Ryu, U-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2326-2333
    • /
    • 2000
  • Creep tests for type 316L(N) stainless steel were carried out using constant-load creep machines at 55$0^{\circ}C$, 575$^{\circ}C$ and $600^{\circ}C$. Material constants necessary to predict creep rupture time were obtained from the experimental creep data. And the applicability of Monkman-Grant(M-G) and modified M-G relationships was discussed. The log-log plot of M-G relationship between the rupture time($t_r$,) and the minimum creep rate ($ $\varepsilon$ _m$) was dependent on test temperatures. The slope of m was 1,05 at 55$0^{\circ}C$ and m was 1.30 at $600^{\circ}C$. On the other hand, the log-log plot of modified M-G relationship between $t_r/$\varepsilon$_r$, and $ $\varepsilon$ _m$ was independent on stresses and temperatures. That is, the slope of m' was approximately 1.35 in all the data. Thus, modified M-G relationship for creep life prediction could be utilized more reasonably than that of M-G relationship for type 316L(N) stainless steel. It was analyzed that the constant slopes regardless of temperatures or applied stresses in the modified relationship were due to an intergranular fracture grown by wedge-type cavities.

Accelerated Life Prediction for STS301L Gas Welded Joint (I) - Fillet Type - (STS301L 가스용접 이음재의 가속수명예측 (I) - Fillet Type -)

  • Baek, Seung-Yeb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.467-474
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for railroad cars and commercial vehicles. Structures made of stainless steel sheets are commonly fabricated by gas welding, For the fatigue design of gas welded joints such as fillet joints, it is necessary to obtain design information of the stress distribution at the weldment as well as the fatigue strength of the gas-welded joints. Further, the influence of the geometrical parameters of gas-welded joints on stress distribution and fatigue strength must be evaluated. in this study, ${\Delta}P-N_f$ curves were obtained by fatigue tests. and, the ${\Delta}P-N_f$ curves were rearranged on the basis of the ${\Delta}{\sigma}-N_f$ relation for the hot-spot stresses at the gas-welded joints. These results, were used for conducting an accelerated life test(ALT) From the experiment results, an acceleration model was derived and factors were estimated. The objective is to obtain the information required for the analysis of the fatigue lifetime of fillet welded joints and for data analysis by the statistic reliability method to save time and cost and to develop optimum accelerated life prediction plans.

Protector Design and Shock Analysis for a Launch-Reconnaissance Robot (발사형 정찰로봇을 위한 보호체 설계 및 충격해석)

  • Kang, Bong-Soo;Park, Moon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.971-976
    • /
    • 2011
  • This paper presents the design concepts of a protector for a launch-reconnaissance robot that is to be deployed for data-collection in hazardous regions. The protector protects the reconnaissance robot inside from shock induced during the process of launch, flight, and landing. Since the outer shells of the protector are automatically opened wide by the unlocking mechanism during the landing stage, the reconnaissance robot can easily exit the protector and move around to carry out its mission. We carefully simulated a finite-element model of the protector with the robot and compared the results with the actual dynamic behavior of the system. Shock- response tests using a droptable showed that the proposed protector filled with silicon material successfully attenuated external shock.

Forensic Engineering Study on Assessment of Damage to Pressure Vessel Because of CNG Vehicle Explosion (CNG 차량 폭발의 용기 손상 평가에 관한 법공학적 연구)

  • Kim, Eui-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.439-445
    • /
    • 2011
  • Forensic Engineering is the art and science of professionals qualified to serve as engineering experts in courts of law or in arbitration proceedings. Buses using compressed natural gas (CNG) trend to be extended in use internationally as optimal counterplan for reducing discharge gas of light oil due to high concern about environment. However, CNG buses have to be equipped with composite pressure vessels (CPVs); since the CPVs contain compressed natural gas, the risks in the case of accident is very high. Hence, the investigation of such accidents is usually associated with engineering analysis. Among the possible reasons for such CNG explosion accidents is vehicle fire and vessel fracture. By conducting formal inspection and engineering tests, in this study, the cause of vessel explosion is investigated by analyzing the failure mechanism by fractography and by comparing the material properties of a reference part with those of a problem part by adopting instrumented indentation technique.

Spatial Randomness of Fatigue Crack Growth Rate in Friction Stir Welded 7075-T651 Aluminum Alloy Welded Joints (Case of LT Orientation Specimen) (마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파율의 공간적 불규칙성 (LT 방향의 시험편에 대하여))

  • Jeong, Yeui Han;Kim, Seon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1109-1116
    • /
    • 2013
  • This study aims to investigate the spatial randomness of fatigue crack growth rate for the friction stir welded (FSWed) 7075-T651 aluminum alloy joints. Our previous fatigue crack growth test data are adopted in this investigation. To clearly understand the spatial randomness of fatigue crack growth rate, fatigue crack growth tests were conducted under constant stress intensity factor range (SIFR) control testing. The experimental data were analyzed for two different materials-base metal (BM) and weld metal (WM)-to investigate the effects of spatial randomness of fatigue crack growth rate and material properties, the friction stir welded (FSWed) 7075-T651 aluminum alloy joints, namely weld metal (WM) and base metal (BM). The results showed that the variability, as evaluated by Weibull statistical analysis, of the WM is higher than that of the BM.