• Title/Summary/Keyword: material strength of construction site

Search Result 115, Processing Time 0.038 seconds

A Study on the Field Application of Ground Stabilizer using Circulating Resource for Improvement of Soft Ground in Saemangeum Area (새만금 지역의 연약지반 개량을 위한 순환자원 활용 지반안정재의 현장적용에 관한 연구)

  • Seo, Se-Gwan;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • The DMM (Deep mixing method) is a construction method in which an improved pile is installed in the soft ground by excavation ground using an auger and then mixing ground stabilizer with soil. Improved pile installed in the soft ground by the DMM may have different compressive strength depending on the properties and characteristics of the soil. In the previous study, laboratory tests were performed on the ground stabilizer for the DMM developed by using the ash of the circulating fluidized bed boiler as a stimulator for alkali activation of the blast furnace slag. And the test results were analyzed to derive the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu). In this study, comparative reviews were conducted on the correlations derived from the same laboratory tests on soil material collected from the Saemangeum area and the stability of the site was evaluated by analyzing the test results performed at the site. As a result, the clay collected from the Saemangeum area satisfies the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu) derived from the previous study. And the result of the test at the field showed a higher uniaxial compressive strength than the standard strength at the field, indicating excellent stability.

Behavior of Variable Cross-Section Soft Ground Reinforced Foundation in Soft Grounds (연약지반에 적용된 변단면 연약지반보강기초의 거동분석)

  • Kim, Khi-Woong;Kim, Dong-Wook;Jo, Myoung-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.89-96
    • /
    • 2016
  • Compressive axial behavior of the variable cross-section soft ground reinforced foundation is investigated from the field load test results at ${\bigcirc}{\bigcirc}$ construction site in Incheon city. Variable cross-section soft ground reinforced foundation is a type of partial-displacement pile formed by mixing bidding material with in situ soils to obtain a rigid and strong variable cross-section column in a relatively soft ground. The foundations are usually constructed as a group; however in this study, only single foundation was installed and tested under compressive axial load on foundation head. For the comparison of the variable cross-section soft ground reinforced foundation axial behavior, behavior of typical Pretensioned spun high strength concrete (PHC) pile constructed on a relatively soft ground near the surface was analyzed. It was concluded that variable cross-section soft ground reinforced foundation efficiently resists against axial load with sufficient stiffness and strength within a considerable range of axial load magnitude.

Developing Design Process of 3D Printing Concrete Mix Proportion (3D 프린팅 콘크리트 배합설계 프로세스에 관한 연구)

  • Chen, Chao;Park, Yoo-Na;Yoo, Seung-Kyu;Bae, Sung-Chu;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.7 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • 3D concrete printing technology builds structural components layer-by-layer with concrete extruded through a nozzle without using forms. This technology can simplify construction processes by optimizing design flexibility, construction time, and cost. Furthermore, the 3D printing technology is easy to make an irregularly shaped and function embedded building(or object) which is difficult to be constructed by conventional construction method. However, the 3D printing concrete is not suitable for current commercial standard and the material itself. It is also difficult to apply it to the construction site due to the lack of initial strength and the nozzle which is clogged during the process. The research of mix proportion design process for 3D printing concrete which differs from the conventional concrete is necessary in order to solve the problems. This paper aims to calculate the 3D printing concrete mix proportion design process based on the mix materials and performance information derived from the previous researches. Therefore, the usage variation range, mutual influence relationship, and the importance priority of the mix proportion are analyzed. Based on this results, the basic design process of 3D printing concrete which contains planning design phase, basic design phase and validating performance phase is suggested. We anticipate to confirm applicability verification about the actual production by referring to this 3D printing concrete mix proportion study. In the future, this study can be utilized for blueprint of the 3D printing concrete mix proportion.

A Study on the Reinforcement of Bridge Foundation in the Limestone Cavity (석회암 공동지역의 교량기초 보강에 관한 연구)

  • Lee, Sang-Chul;Ryu, Chang-Yeol;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • Irregular distributions of limestone cavity in Gang-Won province area may cause unexpected accidents from reduced serviceability or failure of structure. It is requested that an appropriate ground reinforcement method should be used to improve bearing capacity of structure, and the method should also be satisfied with environmental requirements. Among several methods used for foundation constructions in cavity area, Rod Jet Pile(RJP) method has been widely used. While the RJP method was used to improve bearing capacity for the railway bridge foundations, water pollutions of drinking water as well as fishery located adjacent to this project area were occurred. The main reason of the water pollution was cement runoff used in cement mortar during injecting material in RJP method. Laboratory tests were performed to prevent water pollution. The compaction mortar method using low movable material was selected for this project. The quality of water at a fishery adjacent to the site and the compressive strength of cores taken from the construction site were measured. Test results show that the water pollutions was minimized, and the average compressive strength of foundation material was over 5 MPa. As a result of this study, compaction mortar method can be used to ensure the bearing capacity of foundation and to prevent environment pollutions.

A Study on the Characteristics of Bonding Strength by Types of Repair Materials by Mechanical Pressurizing Equipment(MPE) (기계식 가압장비(MPE)에 의한 보수재 종류별 부착강도 특성에 관한 연구)

  • Yu, Hyeong-Sik;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.553-560
    • /
    • 2020
  • In the existing research paper, we developed Mechanical Pressurizing Equipment(MPE) that can apply a certain amount of pressure and found out about improving the bonding strength of repair materials constructed in the repair section, and if pressurized, the bonding strength could be increased. In this study, the pressure of Mechanical Pressurizing Equipment(MPE) was changed to 0, 10, 30, 50, and 80 kPa, and the test was conducted to select effective pressure by measuring the flexural, compressive, and bonding strength of the specimens and deformation of the pressure plate at the age of 3 and 28th days. As a result of the test, 30 kPa was the most efficient pressure for the MPE. After producing the specimen with three types of repair materials with different main components, the bonding strength was measured according to dry and wet conditions, construction site (ceiling, wall and floor), and whether or not pressurized, on the 3rd, 7th, 14th, and 28th, indicating that the repair materials mixed with cellulose fiber was most effective for the MPE.

The Fundamental Properties of Foamed Concrete as the Eco-friendly Ground Repair System for Cast in Site Using the CSA (CSA를 사용한 친환경 지반보수용 현장 기포콘크리트의 기초 특성 검토)

  • Woo, Yang-Yi;Park, Keun-Bae;Ma, Young;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study aimed to develop a foam concrete material for a ground repair system that has low strength and low fluidity by using an eco-friendly binder, which substitutes industrial by-products for more than 90% of cement. Basic properties were evaluated after substituting a small amount of calcium sulfo aluminate (CSA) for the binder to improve the sinking depth rate and volume change, commonly found when it had a large amount of industrial by-products. The substitution rates of CSA for the eco-friendly binder used for the foam concrete were 2.5, 5, and 10%. Fresh properties, hardened properties, pore structure, and hydrates were analyzed. Experimental results showed that using only 2.5% of CSA could improve the deep sinking depth which occurred when using an eco-friendly binder. As a result, the weight difference between the upper, middle, and lower parts of cast specimens was improved even after being hardened. The addition of CSA also contributed to the formation of small, uniformly sized closed pores and improved initial strength. However, when the proportion of CSA increased, the long-term strength decreased. However, it satisfied the target strength when 5% or less of CSA was used. The results of this study revealed that it was possible to manufacture foam concrete with low strength and high fluidity for repairing ground satisfying target qualities by adding 2.5% of CSA to the eco-friendly binder containing a large amount of industrial by-products.

Effect of Joint Reinforcement on Reinforced Concrete Pile by Centrifugal Casting (원심성형 철근콘크리트 말뚝 이음부의 보강 효과)

  • Joo, Sanghoon;Hwang, Hoonhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.501-509
    • /
    • 2019
  • The construction of foundation piles for buildings and bridges is changing from pile driving to an injected precast pile method. The goal is to minimize environmental damage, noise pollution, and complaints from neighboring residents. However, it is necessary to develop economic piles that are optimized for precasting by a centrifugal method in terms of both the material and structural system. A reinforced joint method is proposed for reinforced concrete piles (RC piles) manufactured by centrifugal casting. A previous study concluded that the structural performance of the current joint system for RC piles could be improved by using a reinforced joint composed of extended circular band plates and studs. In this study, the structural performance of such a joint was validated experimentally by bending and shear strength measurements. The proposed joint reinforcement method showed adequate structural performance in terms of bending and shear strength. The overall load-deflection behavior is close to that of a structure without joints, so it is expected that the behavior and performance of the design can be reliably reflected in site structures.

A study of mixing ratio of seal material for umbrella arch reinforcement for tunnelling (터널 강관 보강형 다단 그라우팅의 Seal재 배합비에 대한 연구)

  • Hwang, Beoung-Hyeon;Kim, Yeon-Deok;Sim, Jae-Hoon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.367-381
    • /
    • 2020
  • This paper presents the seal material mixing ratio of tunnel umbrella arch reinforcement method. Currently, there is no clear standard for the proper gelation time and curing time of the Seal material in Korea, and the quality control is also difficult because it cannot be verified. In response, the ratio of the mixture of the seal material was composed of four types of indoor experiments, and the amount of gelation time and bleed was checked. In addition, a non-cart penetration test confirmed the curing time and compared the ratio of each combination. Further experiments on W/C 120% identified the effect of mixing speed and time on the seal material. A total of three field experiments were conducted based on indoor experiments, and the size and strength of bulb formation were compared by checking the curing time of the specimen and main injection. Comparisons show that the lower W/C, the stronger the strength, the larger the size of the bulb, and the faster the hardening time appears. Based on the results of the gelation time and curing time, it was deemed that the mixing ratio of W/C 120% is most appropriate when applied to the actual site.

Petro-mineralogical and Mechanical Property of Fault Material in Phyllitic Rock Tunnel (천매암 터널 단층물질의 암석.광물학적 및 역학적 특성)

  • Lee, Kyoung-Mi;Lee, Sung-Ho;Seo, Yong-Seok;Kim, Chang-Yong;Kim, Kwang-Yoem
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.339-350
    • /
    • 2007
  • Content, swelling, concentration, drainage of clay are critical factors that could control rock failures as well as discontinuous geological structures like faults and joints. Especially, the proportional components of clay minerals can be one of few direct indicators to a rock failure caused well by rainfall. Criticality of the role of clay mineral contents gets bigger in the slope and tunnel design. This study, using a horizontal boring core of pelitic/psammitic phyllite from the OO tunnel construction site, aims to investigate mineral composition changes related to fault distribution and their mechanical effects to the activity of these discontinuous layers (i.e., clay-filled fault layers), and eventually to define correlation among rock compositions, weathering products and rock instabilities. Field survey and lab tests were carried out for the composition and strength index of fault clay minerals within the core samples and microscopic analysis of fresh and weathered rock samples.

Evaluation of Hardening Properties and Dry Shrinkage of Non-Sintered Binder Based Floor Mortar Utilizing Alpha-Hemihydrate Gypsum (알파반수석고를 활용한 비소성결합재 기반 바닥 모르타르의 경화특성 및 건조수축 평가)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.359-365
    • /
    • 2015
  • Floor mortar experiences dry shrinkage by temperature and humidity difference of internal matrix with material type. Also, since floor mortar is influenced by environmental conditions during placing and curing period, cracks are likely to be occurred. In this study, it was evaluated the hardening and dry shrinkage properties of non-sintered binder based floor mortar utilizing alpha-hemihydrate gypsum which has expansibility in order to prevent crack of the floor mortar. It was applied to the construction site, and examined the effects of external environmental conditions on shrinkage deformation and cracking. Different types of slag accelerated initial and final setting in comparison with cement mortar and its compressive strength was satisfied standard compressive strength for floor mortar. Also shrinkage deformation behavior after the initial expansion exhibited a similar tendency with the cement mortar. From the field application result, no crack was found from slag mortar, and it is determined that the slag mortar has better dimensional stability than cement mortar caused by external environment conditions.