• Title/Summary/Keyword: material removal process

Search Result 668, Processing Time 0.025 seconds

A Study on Characteristics of Pulverized Ion Exchange Resins (이온교환수지 분체 특성에 대한 연구)

  • Jaeyong Huh;Gyeongmi Goo;Yongwon Jang;Sanghyeon Kang
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.132-139
    • /
    • 2024
  • The ion exchange resin used to remove total dissolved solids (TDS) is used by being packed in a column, and sufficient contact time between the ionic material and the ion exchange resin is required during the ion exchange process. In this study, the ion exchange resin that exhibits high TDS reduction even with a short contact time through pulverization of the ion exchange resin was characterized. The optimal size of resin considering flowability was over 100 ㎛. The highest pulverizing yield were obtained that 250~500 ㎛ size and 100~250 ㎛ size were 67.3% and 36.9%, respectively. Also, the highest yield and the pulverizing time of 100~500 ㎛ size was 87.1% and 2 minutes, respectively. Under batch test conditions, the time to reach a removal rate of 95% and 99% for 250~500 ㎛ resins was 1.82 and 1.96 times faster than non-pulverized ion exchange resin, respectively. The 100~250 ㎛ resins showed 15.9 times and 6.18 times faster, respectively. Under the column test, a total of 1.74 g of NaCl was removed by non-pulverized ion exchange resins, 1.83 g of NaCl was removed by 250~500 ㎛ resins and 1.63 g of NaCl was removed by 100 and 250 ㎛ resins. As the size of the resin decreased, the capacity slightly decreased. As a result, it was observed that the pulverized ion exchange resins could be a method of achieving high TDS removal performance under short contact time.

Deterministic Pitch Tool Polishing Using Tool Influence Function (드레이퍼 방식 연마기에서의 툴 영향 함수 기법)

  • Yi, Hyun-Su;Yang, Ho-Soon;Lee, Yun-Woo;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.422-428
    • /
    • 2008
  • The pitch tool provides superior surface roughness compared to other types of polishing tool. However, because of difficulty in handling the pitch tool, pitch tool polishing has rarely been analysed, which led many craftsman to eliminate the pitch tool from their experiences. We found that it was possible to use a pitch tool in the well-determined material removal after the completion of computer simulation and experiment. We could simulate the TIF of the pitch tool with 79% accuracy. Also, after five successive simulations of polishing process on a 280 mm optical flat, the surface p-v error was found to be reduced from $1{\mu}m$ to 168 nm.

Electrochemical Characterization of Porous Graphene Film for Supercapacitor Electrode (다공성 그래핀 필름의 슈퍼캐패시터 전극용 전기화학적 특성)

  • Choi, Bong Gill;Huh, Yun Suk;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.754-757
    • /
    • 2012
  • In this report, we fabricate the porous graphene films through embossing process and vacuum filtration method and demonstrate their superior electrochemical properties as supercapacitor electrode materials. Insertion/removal of polystyrene nanoparticles between the graphene sheets allows to provide pore structures, leading to the effective prevention of restacking in graphene films. As-prepared porous graphene films have a large surface area, a bicontinuous porous structures, high electrical conductivity, and excellent mechanical integrity. The electrochemical properties of the porous graphene films as electrode materials of supercapacitor are investigated by using aqueous $H_2SO_4$ and ionic liquid solution under three-electrode system. The porous graphene films exhibit a high specific capacitance (284.5 F/g), which is two-fold higher than that of packing graphene films (138.9 F/g). In addition, the rate capability (98.7% retention) and long-term cycling stability (97.2%) for the porous graphene films are significantly enhanced, due to the facilitated ion mobility between the graphene layers.

Thermal deformation and thermal stress analysis of pipe during pipe internal fluid freezing (배관의 결빙에 의한 열변형 및 열응력 해석)

  • Park, Yeong-Don;Byeon, Sang-Gyu;Gang, Beom-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • In case the systems have radioactivity, toxic liquid or expensive fluid, and have to be performed repair work at one point of the system pipe, the formation of an internal ice plug by the removal of heat from the pipe is often consideredas a useful method. In this procedure, an annular jacket is placed around the pipe, and the jacket is then filled with liquid Nitrogen(-196.deg. C). Thermal analysis by the finite element method based on the laboratory experiments has been constructed. The result of the finite element analysis on the experimental model shows to be reasonable, and thus the finite element analysis for different pipe size, material and thickness has been performed to see if the ice plugging procedure in various applications can be safely performed without possibility of damage to the pipe. It has been confirmed that in carbon steel pipes the maximum stress is found around the boundary of the freezing jacket, and the stress increases as pipe thickness increases, but the maximum stress shows no consistency along the increment of the pipe diameter. The maximum stresses appear lower than yield stress in carbon steel. It has been also shown that in stainless steel pipes the maximum stresses are also found around the boundary of the freezing jacket, but almost the same value in spite of different pipe size an thickness, and the maximum stresses show slightly higher than the yield stress of the stainless steel.

Modeling of Various Tool Influence Functions in Computer Controlled Optical Surfacing (컴퓨터 제어를 통한 광학 가공에서의 다양한 툴 영향 함수의 모델링)

  • Kim, Gi-Chul;Ghim, Young-Sik;Rhee, Hyug-Gyo;Kim, Hak-Sung;Yang, Ho-Soon;Lee, Yun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.167-172
    • /
    • 2016
  • The computer controlled optical surfacing (CCOS) technique provides superior fabrication performance for optical mirrors when compared to the conventional method, which relies heavily on the skill of the optician. The CCOS technique provides improvements in terms of mass production, low cost, and short polishing time, and are achieved by estimating and controlling the moving speed of the tool and toolpath through a numerical analysis of the tool influence function (TIF). Hence, the exact estimation of various TIFs is critical for high convergence rates and high form accuracy in the CCOS process. In this paper, we suggest a new model for TIFs, which can be applied for various tool shapes, different velocity distributions, and non-uniform tool pressure distributions. Our proposed TIFs were also verified by comparisons with experimental results. We anticipate that these new TIFs will have a major role in improving the form accuracy and shortening the polishing time by increasing the accuracy of the material removal rate.

The Effective Preparation of Protopanaxadiol Saponin Enriched Fraction from Ginseng using the Ultrafiltration

  • Seol, Su Yeon;Kim, Bo Ram;Hong, Se Chul;Yoo, Ji Hyun;Lee, Kun Hee;Lee, Ho Joo;Park, Jong Dae;Pyo, Mi Kyung
    • Natural Product Sciences
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2014
  • In this study, edible protopanaxadiol saponin enriched fraction were prepared by ultrafiltration (UF). Ginseng extract was prepared from mixtures of ginseng main root and rootlet (root: rootlet = 4 : 6). UF system was used the four-piston Diaphragm pump equipped with 5 kDa pore size Hydrosart Cassette made by regenerated cellulose acetate (CA) or 3 kDa pore size Hollow Fiber cartridge made by polyethersulfone (PES). Total ginsenoside contents of concentrated fraction by UF system was found to higher, compared to before those of untreated method. Especially, processing of UF showed the increase of PPD-type ginsenoside, while PPT-type ginsenoside was gradually decreased by both 3 kDa and 5 kDa membrane. After removal of 80% water by the 5 kDa Hydrosart Cassette and by 3 kDa Hollow Fiber cartridge, ginsenoside Rb1 content was higher 37.2 mg/g and 25.3 mg/g than 20.8 mg/g in untreated process. The ratio of Rb1 to Rg1 (Rb1/Rg1) and PPD- to PPT- type ginsenoside (PPD/PPT) were higher in inner fluid of ginseng extract after UF by 3 kDa cartridge (47.1 and 23.5, respectively) and 5 kDa Cassette (25.3 and 11.9, respectively) than those of before UF (5.7 and 3.7, respectively). PPD-type ginsenoside enriched fraction by UF system could be developed as a new ginseng material in food and cosmetic industrials.

Effect of Activated Carbon and Diatomite on Deodorant Efficiency of Recycled Fly Ash Panel (중유회 탈취패널에 있어서 활성탄과 규조토의 탈취성능 영향평가)

  • Kim, Min-Ho;Kim, Young-Kyu;Han, Kenneth N.;Kim, Se-Jung;Kim, Nam-Soo;Hong, Seong-Yeup;Han, Hyea-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.625-630
    • /
    • 2010
  • This study aims to examine the possible use of heavy oil fly ash as raw material for deodorization panels by adding additives such as activated carbon and diatomite during deodorization panel manufacturing process and improving the performance of formaldehyde and toluene elimination.The recycled heavy oil flyash deodorization panel to be used either of them as additives removed more than 93% of formaldehyde and more than 97% of toluen but the compressive strength was decreased 27 to 63%. In an experiment to be used both additives, Whereas, the panel to include activated carbon 5% and diatomite 5% removed 84% against formaldehyde and 96% against toluen, and the compressive strength was increased 32% better than standard panel. Therefore it could be confirmed that the recycled heavy oil flyash deodorization panel is increased the compressive strength and the removal efficiency against harmful chemical substances by using the additives mixture.

Study of Inhibition Characteristics of Slurry Additives in Copper CMP using Force Spectroscopy

  • Lee, Hyo-Sang;Philipossian Ara;Babu Suryadevara V.;Patri Udaya B.;Hong, Young-Ki;Economikos Laertis;Goldstein Michael
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.5-10
    • /
    • 2007
  • Using a reference slurry, ammonium dodecyl sulfate (ADS), an anionic and environmentally friendly surfactant, was investigated as an alternative to BTA for its inhibition and lubrication characteristics. Results demonstrated that the inhibition efficiency of ADS was superior to that of BTA. Coefficient of friction (COF) was the lowest when the slurry contained ADS. This suggested that adsorbed ADS on the surface provided lubricating action thereby reducing the wear between the contacting surfaces. Temperature results were consistent with the COF and removal rate data. ADS showed the lowest temperature rise again confirming the softening effect of the adsorbed surfactant layer and less energy dissipation due to friction. Spectral analysis of shear force showed that increasing the pad-wafer sliding velocity at constant wafer pressure shifted the high frequency spectral peaks to lower frequencies while increasing the variance of the frictional force. Addition of ADS reduced the fluctuating component of the shear force and the extent of the pre-existing stick-slip phenomena caused by the kinematics of the process and collision event between pad asperities with the wafer. By contrast, in the case of BTA, there were no such observed benefits but instead undesirable effects were seen at some polishing conditions. This work underscored the importance of real-time force spectroscopy in elucidating the adsorption, lubrication and inhibition of additives in slurries in CMP.

Recovery of High Concentrated Phosphates using Powdered Converter Slag in Completely Mixed Phosphorus Crystallization Reactor (완전혼합형 정석탈인반응조에서 미분말 전로슬래그를 이용한 고농도 인의 회수)

  • Kim, Eung-Ho;Yim, Soo-Bin;Jung, Ho-Chan;Lee, Eok-Jae;Cho, Jin-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.59-65
    • /
    • 2005
  • A phosphate recovery system from artificial wastewater was developed using a completely mixed phosphorus crystallization reactor, in which powdered converter slag was used as a seeding crystal. In preliminary test, the optimal pH range for meta-stable hydroxyapatite crystallization for high phosphorus concentration was observed to be 6.0 to 7.0, which was different from the conventionally known pH range (8.0~9.5) for effective crystallization in relatively low phosphorus concentration less than 5 mg/L. The average phosphorus removal efficiency in a lab-scaled completely mixed crystallization system for artificial wastewater with about 100 mg/L of average $PO_4-P$ concentration was shown to be 60.9% for 40 days of lapsed time. XRD analysis exhibited that crystalline of hydroxyapatite formed on the surface of seed crystal, which was also observed in SEM analysis. In EDS mapping analysis, composition mole ratio (=Ca/P) of the crystalline was found to be 1.78, indicating the crystalline on the surface of seed crystal is likely to be hydroxyapatite. Particle size distribution analysis showed that average size of seed crystal increased from $28{\mu}m$ up to $50{\mu}m$, suggesting that phosphorus recycling from wastewater with high phosphorus concentration can be successfully obtained by using the phosphorus crystallization recovery system.

Photo Catalytic Ability of Acicular Shaped TiO$_{2}$ Rutile Powder in Aqueous Metal-EDTA Solutions

  • Kim, Sun-Jae;chang-Joo choi;Park, Soon-Dong;Hwang, Jong-Sun;Han, Byung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.37-41
    • /
    • 2001
  • Photo catalytic characteristics of nano-sized TiO$_2$ powder with rutile phase produced using homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial P-25 powder by Degussa Co. The TiO$_2$ powder by HPPLT showed very higher photoactivity in the removal rate, showing lower pH values in the solution, than the P-25 powder when eliminating metal ions such as Pb and Cu from aqueous metal-EDTA solutions. This can be inferred the more rapid photo-oxidation or -reduction of metal ions from the aqueous solution, together with relatively higher efficiencies in the use of electron-hole pair formed on the surface of TiO$_2$ particle, under UV light irradiation. Also, in the view of the TiO$_2$ particle morphology, compared to the well-dispersed spherical P-25 particle, the agglomerated TiO$_2$ particle by HPPL T consists of acicular typed primary particle with the thickness ranged of 3∼7 nm, which would be more effective to the photocatalytic reactions without electron-hole recombination on the surface of the TiO$_2$ particle under the UV light irradiation. It is, therefore, thought that the higher photo activity of the rutile TiO$_2$ powder by HPPLT in the aqueous solutions resulted from having its higher specific surface area as well as acicular shape primary particle with very thin thickness.

  • PDF