• Title/Summary/Keyword: material removal process

Search Result 668, Processing Time 0.027 seconds

A Magnetorheological Polishing System (자기유변유체를 이용한 연마가공 시스템)

  • 김영민;신영재;이응숙;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.324-328
    • /
    • 2003
  • The Magnetoeheological fluid has the properties that it's viscosity has dramastic changed under some magnetic fields therefore, Magnetorhlogical fluids has been used for micro polishing of the micro part( for example, a aspherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorhological finshing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fulid ate brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate f3r glass polishing lends support the validity of the approach.

  • PDF

A Statistical Study of CMP Process in Various Scales (CMP 프로세스의 통계적인 다규모 모델링 연구)

  • 석종원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2110-2117
    • /
    • 2003
  • A physics-based material removal model in various scales is described and a feature scale simulation for a chemical mechanical polishing (CMP) process is performed in this work. Three different scales are considered in this model, i.e., abrasive particle scale, asperity scale and wafer scale. The abrasive particle and the asperity scales are combined together and then homogenized to result in force balance conditions to be satisfied in the wafer scale using an extended Greenwood-Williamson and Whitehouse-Archard statistical model that takes into consideration the joint distribution of asperity heights and asperity tip radii. The final computation is made to evaluate the material removal rate in wafer scale and a computer simulation is performed for detailed surface profile variations on a representative feature. The results show the dependence of the material removal rate on the joint distribution, applied external pressure, relative velocity, and other operating conditions and design parameters.

The Principle of Magnetorheological finishing for a micro part (자성 유체를 이용한 미세연마가공의 원리)

  • 김동우;신영재;이응숙;조명우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1840-1843
    • /
    • 2003
  • The Magnetorheological fluid has the properties that its viscosity has drastic changed under some magnetic fields therefore, Magnetorheological fluids has been used for micro polishing of the micro part( for example, a aspherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorheological finishing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fluid ate brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate for glass polishing lends support the validity of the approach.

  • PDF

The Development of Polishing System a Magnetorheological Fluids (자기유변유체를 이용한 연마가공 시스템의 개발)

  • 신영재;김동우;이응숙;김경웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.46-52
    • /
    • 2004
  • The Magnetorheological fluid has the properties that its viscosity has drastic changed under some magnetic fields therefore, Magnetorheological fluids has been used fur micro polishing of the micro part(for example, a spherical surface in a micro lens). The polishing process may appears as follows. A part rotating on the spindle is brought into contact with an Magnetorheological finishing(MRF) fluids which is set in motion by the moving wall. In the region where the part and the MRF fluid are brought into contact, the applied magnetic field creates the conditions necessary for the material removal from the part surface. The material removal takes place in a certain region contacting the surface of the part which can be called the polishing spot or zone. The polishing mechanism of the material removal in the contact zone is considered as a process governed by the particularities of the Bingham flow in the contact zone. Resonable calculated and experimental magnitudes of the material removal rate for glass polishing lends support the validity of the approach.

Removal Phenomenon of Black Core in Clay Brick Containing High Carbon Content (고탄소질함유 점토벽돌의 내부흑심제거 속도에 대한 연구)

  • Jung, Jin-Ho;Kim, Hyun-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.315-319
    • /
    • 2006
  • There have been some studies on the use of coal waste as a raw material for clay bricks due to the lack of naturally producing minerals. It can help resolving the problems of pollution, forest conservation and flood control by utilizing coal waste. However, high content of carbon materials usually leads to the black core in clay bricks after firing process, and diminishes the mechanical and aesthetical properties of clay brick. In this study, the effect of firing process is investigated for the removal of black core in clay bricks with carbon content. The removal kinetics of black core are also compared and investigated with the firing schedule and black core removal.

On the Relationship between Material Removal and Interfacial Properties at Particulate Abrasive Machining Process (연마가공에서의 접촉계면 특성과 재료제거율간의 관계에 대한 연구)

  • Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.404-408
    • /
    • 2009
  • In this paper, the relationship between the material removal rate and the interfacial mechanical properties at particle-surface contact situation, which can be seen in an abrasive machining process using micro/nano-sized particles, was discussed. Friction and stiffnesses were measured experimentally on an atomic force microscope (AFM) by using colloidal probes which have a silica colloid particle in place of tip to simulate a particle-flat surface contact in an abrasive machining process. From the experimental investigation and theoretical contact analysis, the interfacial contact properties such as lateral stiffness of contact, friction, the material removal rate were presented with respect to some of material surfaces and the relationship between the properties as well.

Assessment of Micro Organic Pollutants Removal Using Advanced Water Treatment Process and Nanofiltration Process (고도처리공정과 나노여과공정에서의 미량유해물질 제거 평가)

  • Kang, Joon-Seok;Choi, Yang-Hun;Kwon, Soon-Buhm;Yu, Young-Beom
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.579-587
    • /
    • 2014
  • Various kinds of micro organic pollutants have frequently been detected from a water system. Therefore, it is considered to be very important part in the drinking water treatment system. And the research about removal process and processing efficiency have been being conducted briskly. In this study, the removal efficiency was evaluated using advanced water treatment process and nanofiltration process. The removal efficiency of nanofiltration process was very different according to physical and chemical characteristics of materials. The molecular weight of cutoff was the most influential factor in the removal efficiency. And when pKa value was higher than pH of raw water or Log Kow value was below 2, the removal efficiency of material was decreased. In case of oxidation reaction, the bigger the molecular weight of material was and the more hydrophobic a material was, the less oxidation reaction occurred. And the removal efficiency was decreased. Most unoxidized materials were removed by absorption. And the more actively oxidation reaction occurred by $H_2O_2$, the more absorption reaction increased.

Understanding the Material Removal Mechanisms of Abrasive Water Jet Drilling Process by Acoustic Emission Technique

  • Kwak, Hyo-Sung;Kovacevic, Radovan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.40-52
    • /
    • 1998
  • Among the non-traditional machining methods, Abrasive waterjet machining process shows big promise in drilling difficult-to-machine materials due to its numerous advantages such as absence of heat affect zone and thermal distortion. Acoustic emission signal technique is used to understand about material removal mechanisms during abrasive waterjet drilling process. More information about the drilling process is derived through frequency decomposition of auto regressive moving average modeling representing acoustic emission signals.

  • PDF

Effects of Mixed Oxidizer on the W-CMP Characteristics (혼합 산화제가 W-CMP 특성에 미치는 영향)

  • 박창준;서용진;김상용;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1181-1186
    • /
    • 2003
  • Chemical Mechanical Polishing (CMP) is an essential dielectric planarization in multilayer microelectronic device fabrication. In the CMP process, it is necessary to minimize the extent of surface defect formation while maintaining good planarity and optimal material removal rates. The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on W passivation layer, in order to obtain higher removal rate (RR) and very low non-uniformity (NU %) during W-CMP process. In this paper, we compared the effects of oxidizer or W-CMP process with three different kind of oxidizers with 5 wt% hydrogen peroxide such as Fe(NO$_3$)$_3$, H$_2$O$_2$, and KIO$_3$. The difference in removal rate and roughness of W in stable and unstable slurries are believed to caused by modification in the mechanical behavior of Al$_2$O$_3$ particles in presence of surfactant stabilizing the slurry.

Effect of Temperature on Polishing Properties in Oxide CMP (산화막 CMP에서 발생하는 온도가 연마특성에 미치는 영향)

  • Kim, Young-Jin;Park, Boum-Young;Kim, Hyoung-Jae;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • We investigated the effect of process temperature on removal rate and non-uniformity based on single head kinematics in oxide CMP. Generally, it has been known that the temperature profile directly transfers to the non~uniformity of removal rate on the wafer, which has similar tendency with the sliding distance of wafer. Experimental results show that platen velocity is a dominant factor in removal rate as well as average temperature. However, the non-uniformity does not coincide between process temperature and removal rate, due to slurry accumulation and low deviation of temperature. Resultantly, the removal rate is strongly dependent on the rotational speed of platen, and its non -uniformity is controlled by the rotational speed of polishing head. It means lower WIWNU (With-in-wafer-non-uniformity) can be achieved in the region of higher head speed.