• Title/Summary/Keyword: material removal process

Search Result 668, Processing Time 0.032 seconds

Characteristics of Chemical-assisted Ultrasonic Machining of Glass (화학적기법을 이용한 유리의 초음파가공 특성)

  • Kim, B.H.;Jeon, S.K.;Kim, H.Y.;Jeon, B.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1349-1354
    • /
    • 2003
  • Ultrasonic Machining process is an efficient and economical means of precision machining on glass and ceramic materials. However, the mechanics of the process with respect to crack initiation and propagation, and stress development in the ceramic workpiece subsurface are still not well understood. In this research, we investigate the basic mechanism of chemical assisted ultrasonic machining(CUSM) of glass through the experimental approach. For the purpose of this study, we designed and fabricated the desktop micro ultrasonic machine. The feed is controlled precisely by using the constant load control system. During the machining experiment, the effects of HF(hydrofluoric acid) characteristics and machining condition on the surface roughness and the material removal rate are measured and compared.

  • PDF

Adaptive Cutting Parameter Optimization Applied to Face Milling Operations (면삭 밀링공정에서의 절삭조건의 적응 최적화)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.713-723
    • /
    • 1995
  • In intelligent machine tools, a computer based control system, which can adapt the machining parameters in an optimal fashion based on sensor measurements of the machining process, should be incorporated. In this paper, the technology for adaptively optimizing the cutting conditions to maximize the material removal rate in face milling operations is proposed using the exterior penalty function method combined with multilayered neural networks. Two neural networks are introduced ; one for estimating tool were length, the other for mapping input and output relations from experimental data. Then, the optimization of cutting conditions is adaptively implemented using tool were information and predicted process output. The results are demonstrated with respect to each level of machining such as rough, fine and finish cutting.

Global planarization Characteristic of $WO_3$ ($WO_3$ 박막의 광역평탄화 특성)

  • Lee, Woo-Sun;Ko, Pi-Ju;Choi, Gwon-Woo;Kim, Tae-Wan;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.89-92
    • /
    • 2004
  • Chemical mechanical polishing (CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-level dielectrics (ILD). we investigated the performance of $WO_3$ CMP used silica slurry, ceria slurry, tungsten slurry. In this paper, the effects of addition oxidizer on the $WO_3$ CMP characteristics were investigated to obtain the higher removal rate and lower non-uniformity.

  • PDF

Numerical Simulation of the Electro-discharge Machining Process of a Conductive Anisotropic Composite (전기전도성 이방성 복합재료 방전가공의 수치모사)

  • 안영철;천갑재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.709-712
    • /
    • 2002
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately the temperature distribution and the shape of the crater were shifted in the same direction respectively and the material removal rate was found to be higher in the case of increasing radial conductivity rather than the axial conductivity.

  • PDF

Characteristic of Addition Oxidizer on the $WO_3$ Thin Film CMP (산화제 첨가에 따른 $WO_3$ 박막의 CMP 특성)

  • Lee, Woo-Sun;Ko, Pi-Ju;Choi, Kwon-Woo;Kim, Tae-Wan;Choi, Chang-Joo;Oh, Geum-Koh;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.313-316
    • /
    • 2004
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-level dielectrics(ILD). we investigated the performance of $WO_3$ CMP used silica slurry, ceria slurry, tungsten slurry In this paper, the effects of addition oxidizer on the $WO_3$ CMP characteristics were investigated to obtain the higher removal rate and lower non-uniformity.

  • PDF

Global planarization Characteristic of $WO_3$ CMP ($WO_3$ CMP의 광역평탄화 특성)

  • Lee, Woo-Sun;Ko, Pi-Ju;Choi, Kwon-Woo;Lee, Young-Sik;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.188-191
    • /
    • 2003
  • Chemical mechanical polishing (CMP) process has been widely used to planarize dielectric layers, which can be applied to the integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of in the defect-free inter-level dielectrics (ILD). we investigated the performance of $WO_3$ CMP used silica slurry, ceria slurry, tungsten slurry. In this paper, the effects of addition oxidizer on the $WO_3$ CMP characteristics were investigated to obtain the higher removal rate and lower non-uniformity.

  • PDF

Study on Within-Wafer Non-uniformity Using Finite Element Method (CMP 공정에서의 웨이퍼 연마 불균일성에 대한 유한요소해석 연구)

  • Yang, Woo Yul;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.272-277
    • /
    • 2012
  • Finite element analysis was carried out using wafer-scale and particle-scale models to understand the mechanism of the fast removal rate(edge effect) at wafer edges in the chemical-mechanical polishing process. This is the first to report that a particle-scale model can explain the edge effect well in terms of stress distribution and magnitude. The results also revealed that the mechanism could not be fully understood by using the wafer-scale model, which has been used in many previous studies. The wafer-scale model neither gives the stress magnitude that is sufficient to remove material nor indicates the coincidence between the stress distribution and the removal rate along a wafer surface.

Methodological Consideration on the Prediction of Electrochemical Mechanical Polishing Process Parameters by Monitoring of Electrochemical Characteristics of Copper Surface

  • Seo, Yong-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.346-351
    • /
    • 2020
  • The removal characteristics of copper (Cu) from electrochemical surface by voltage-activated reaction were reviewed to assess the applicability of electrochemical-mechanical polishing (ECMP) process in three types of electrolytes, such as HNO3, KNO3 and NaNO3. Electrochemical surface conditions such as active, passive, transient and trans-passive states were monitored from its current-voltage (I-V) characteristic curves obtained by linear sweep voltammetry (LSV) method. In addition, the oxidation and reduction process of the Cu surface by repetitive input of positive and negative voltages were evaluated from the I-V curve obtained using the cyclic voltammetry (CV) method. Finally, the X-ray diffraction (XRD) patterns and energy dispersive spectroscopy (EDS) analyses were used to observe the structural surface states of a Cu electrode. The electrochemical analyses proposed in this study will help to accurately control the material removal rate (MRR) from the actual ECMP process because they are a good methodology for predicting optimal electrochemical process parameters such as current density, operating voltage, and operating time before performing the ECMP process.

Investigation of PEG(polyethyleneglycol) Removal Mechanism during UV/O2 Gas Phase Cleaning for Silicon Technology (UV/O2 가스상 세정을 이용한 실리콘 웨이퍼상의 PEG 반응기구의 관찰)

  • Kwon, Sung-Ku;Kim, Do-Hyun;Kim, Ki-Dong;Lee, Seung-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.985-993
    • /
    • 2006
  • An experiment to find out the removal mechanism of PEG(polyethyleneglycol) by using UV-enhanced $O_2$ GPC (gas phase cleaning) at low substrate temperature below $200^{\circ}C$ was executed under various process conditions, such as substrate temperature, UV exposure, and $O_2$ gas. The possibility of using $UV/O_2$ GPC as a low-temperature in-situ cleaning tool for organic removal was confirmed by the removal of a PEG film with a thickness of about 200 nm within 150 sec at a substrate temperature of $200^{\circ}C$. Synergistic effects by combining photo-dissociation and photo oxidation can only remove the entire PEG film without residues within experimental splits. In $UV/O_2$ GPC with substrate temperatures higher than the glass transition temperature, the substantial increase in the PEG removal rate can be explained by surface-wave formation. The photo-dissociation of PEG film by UV exposure results in the formation of end aldehyde by dissociation of back-bone chain and direct decomposition of light molecules. The role of oxygen is forming peroxide radicals and/or terminating the dis-proportionation reaction by forming peroxide.

A Study on the Machining Characteristics for Micro Endmilling by using Ultrahigh-Speed Air Turbine Spindle (초고속 스핀들에 의한 마이크로 엔드밀링의 가공특성에 관한 연구)

  • Kwon D.H.;Kang I.S.;Kim J.H.;Kang M.C.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.598-603
    • /
    • 2005
  • Recently, the advanced industries using micro parts are rapidly growing. The appearance of ultra-precision feed mechanism and the development of control system make it possible to process parts in sub millimeter scale by mechanical methods. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro parts to micro products. So, micro stairs have been trying to cut by using high revolution air turbine spindle and micro-endmill, and studying for magnitude of cutting force. This investigation deals removal characteristics of burr generated by micro endmilling process. Also, decreasing of burr is significant problem in making smooth and precise parts in micro endmilling. In micro endmilling, the material removal rate(MRR) and cutting forces are very small. This paper presents an investigation on the machining characteristics for micro stairs by using ultrahigh-speed air turbine spindle in machining.

  • PDF