• Title/Summary/Keyword: material element

Search Result 5,585, Processing Time 0.029 seconds

Topological material distribution evaluation for steel plate reinforcement by using CCARAT optimizer

  • Lee, Dongkyu;Shin, Soomi;Park, Hyunjung;Park, Sungsoo
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.793-808
    • /
    • 2014
  • The goal of this study is to evaluate and design steel plates with optimal material distributions achieved through a specific material topology optimization by using a CCARAT (Computer Aided Research Analysis Tool) as an optimizer, topologically optimally updating node densities as design variables. In typical material topology optimization, optimal topology and layouts are described by distributing element densities (from almost 0 to 1), which are arithmetic means of node densities. The average element densities are employed as material properties of each element in finite element analysis. CCARAT may deal with material topology optimization to address the mean compliance problem of structural mechanical problems. This consists of three computational steps: finite element analysis, sensitivity analysis, and optimality criteria optimizer updating node densities. The present node density based design via CCARAT using node densities as design variables removes jagged optimal layouts and checkerboard patterns, which are disadvantages of classical material topology optimization using element densities as design variables. Numerical applications that topologically optimize reinforcement material distribution of steel plates of a cantilever type are studied to verify the numerical superiority of the present node density based design via CCARAT.

단조 후 소재 절삭에 따른 탄성회복 변형의 유한요소예측 (Finite Element Prediction of Deformation of Material due to Springback after Material Removal of a Forging)

  • 전만수;정완진;정승원
    • 소성∙가공
    • /
    • 제26권4호
    • /
    • pp.205-209
    • /
    • 2017
  • In this paper, finite element prediction of deformation of material due to springback after material removal by an axisymmetric forging fabrication at room temperature is conducted. An elastoplastic finite element method is employed considering die plastic deformation. The predictions of a springback analysis conducted after the final stroke of an axisymmetric cold forging process containing residual stresses are utilized to be mapped onto the final material after the material removal. It is assumed that material removal occurs at an instant, i.e., all the material to be removed disappears at once. The predictions are compared with experiments, revealing strong qualitative agreement.

엘보우 시편에서의 재료 경화 거동 모델에 따른 최적의 유한 요소 선정 (Selection of the Optimal Finite Element Type by Material Hardening Behavior Model in Elbow Specimen)

  • 허은주;권형도
    • 한국압력기기공학회 논문집
    • /
    • 제13권1호
    • /
    • pp.84-91
    • /
    • 2017
  • This paper is proposed to select the optimal finite element type in finite element analysis. Based on the NUREG reports, static analyses were performed using a commercial analysis program, $ABAQUS^{TM}$. In this study, we used a nonlinear kinematic hardening model proposed by Chaboche. The analysis result of solid elements by inputting the same material constants was different from the results of the NUREG report. This is resulted from the difference between shell element and solid element. Therefore, the material constants that have similar result to the experimental result were determined and compared according to element type. In case of using solid element for efficient finite element analysis, we confirmed that the use of C3D8I element type(incompatible mode 8-node linear brick element) leads the accurate result while reducing the analysis time.

비선형 유한요소해석을 이용한 웨더스트립의 특성예측 (Prediction for Weather Strip Using Nonlinear Finite Element Analysis)

  • 장왕진;한창용;우창수;이성범
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.1022-1027
    • /
    • 2008
  • TPE is used as alternative for rubber, the best example is the weather strip for automobile. The nonlinear material properties of weather strip were important to predict the behaviors of weather strip. Uniaxial tension and equi-biaxial tension tests were performed to achieve the nonlinear material constant and stress-strain curves. The nonlinear material constant of weather strip is evaluated by using the nonlinear finite element analysis. In this paper, the prediction for weather strip is analyzed by using commercial finite element program, ANSYS. The nonlinear finite element analysis of weather strip is executed to predict the behavior of weather strip for automobile.

Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material

  • Nguyen, Dinh-Kien;Gan, Buntara S.;Trinh, Thanh-Huong
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.727-743
    • /
    • 2014
  • Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material (FGM) by using the finite element method is presented. The material property of the structures is assumed to be graded in the thickness direction by a power law distribution. A nonlinear beam element based on Bernoulli beam theory, taking the shift of the neutral axis position into account, is formulated in the context of the co-rotational formulation. The nonlinear equilibrium equations are solved by using the incremental/iterative procedure in a combination with the arc-length control method. Numerical examples show that the formulated element is capable to give accurate results by using just several elements. The influence of the material inhomogeneity in the geometrically nonlinear behavior of the FGM beam and frame structures is examined and highlighted.

고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구 (Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components)

  • 김완두;김완수;김동진;우창수;이학주
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

직교 이방성 재료 물성이 적용된 cantilever beam 형상의 FEM과 BEM에 의한 해석 결과에 대한 비교 연구 (A Comparative study of Finite Element Method and Boundary Element Method Analysis result of Cantilever Beam model by applying Orthotropic Material Properties)

  • 김동은;황영진;이석순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.730-735
    • /
    • 2007
  • This study is a comparison of the results of the orthropic material analysis at cantilever beam model using boundary element(BEM) method and finite element method(FEM). The program with the orthotropic material analysis was developed and applied to the examples in order to evaluate the accuracy of the programs. The examples shows that the results of the BEM is a good agreement with the ABAQUS results.

  • PDF

강체와 접합된 고무의 균열에 대한 유한요소해석 (Finite Element Analysis for Cracks in Rubber Bonded to a Rigid Material)

  • 김창식;임세영
    • 전산구조공학
    • /
    • 제7권2호
    • /
    • pp.111-120
    • /
    • 1994
  • 혼합 유한 요소 기법을 이용하여 STEEL과 같은 강체와 접합된 RUBBER에서의 계면 균열을 해석한다. 먼저 비압축성 물질의 유한 요서 해석을 위해 혼합 유한요소(Mixed Finite Element) 정식화를 한다. 이때 RUBER를 Mooney-Rivlin Material로 가정한다. 다음으로 대변형에 있어서 J-적분이 포텐셜 에너지 방출률로서의 의미를 갖는가를 확인하고 유한 요소 해석 결과를 검증한 후 여러 균열 길이에 대해서 에너지 방출률을 계산하고 균열 성장 안정성을 검토한다.

  • PDF

경사기능 복합재료 판의 기계적 강도해석 (Mechanical strength analysis for functionally graded composite plates)

  • 나경수;김지환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.66-69
    • /
    • 2005
  • Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.Mechanical strength of functionally graded composite plates that composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an IS-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared with those of the previous works. In addition, the displacements, the tensile stresses and the compressive stresses are analyzed for the variation of FGM thickness ratio and volume fraction distribution.

  • PDF

154kV 지중케이블 서지 보호장치용 ZnO 소자의 전기적 특성 (Electrical Characteristics of ZnO element to Surge protector for 154kC Underground Cable)

  • 조한구;한동희;김석수;이종혁;장태봉
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.1054-1056
    • /
    • 2001
  • This paper deals with underground transmission system of present and ZnO element of newly developed. in the characteristics of ZnO element of newly developed, an newly developed ZnO element compared with previous ZnO element that electrical characteristics and external characteristics. In result, characteristics of newly developed ZnO element is improved than previous one.

  • PDF