• Title/Summary/Keyword: material behavior model

Search Result 1,562, Processing Time 0.029 seconds

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.293-310
    • /
    • 2012
  • This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM) model and also presents the details of a new software package called the Virtual Materials Laboratory (VML). The VML software package was developed to address the challenges of fitting complex material models such as the HRBM model to material property test data and to study the behavior of those models under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity simulations of material property experiments is demonstrated by comparing HRBM simulations to laboratory material property data.

Micro-mechanical modeling for compressive behavior of concrete material

  • Haleerattanawattana, P.;Senjuntichai, T.;Limsuwan, E.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.691-707
    • /
    • 2004
  • This paper presents the micro-mechanical modeling for predicting concrete behavior under compressive loading. The model is able to represent the heterogeneities in the microstructure up to three phases, i.e., aggregate particles, matrix and interfaces. The smeared crack concept based on non-linear fracture mechanics is implemented in order to formulate the constitutive relation for each component. The splitting tensile strength is considered as a fracture criterion for cracking in micro-level. The finite element method is employed to simulate the model based on plane stress condition by using quadratic triangular elements. The validation of the model is verified by comparing with the experimental results. The influence of tensile strength from both aggregate and matrix phases on the concrete compressive strength is demonstrated. In addition, a guideline on selecting appropriate tensile strength for each phase to obtain specified concrete compressive strength is also presented.

Numerical Simulation of Rehabilitated Flexural RC Member using High Performance Composite (균열제어 기능성 복합재료를 이용한 RC 휨 부재 보강수치해석)

  • 신승교;김태균;임윤묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.543-548
    • /
    • 2003
  • In this study, a numerical model is developed using axial deformation link elements that can effectively predict the failure behavior of RC type structures. Using this mod 1, numerical analysis was performed to investigate the strengthening effect and failure behavior of structures repaired with a new material. High-Performance Cementitious Composites, which is characterized by its ductility with 5% strain-capacity is used as a repair material. To investigate the validity of developed numerical model, simulations of direct tension specimen and flexural specimen are performed and the results are compared with published ones. The similar analysis is performed for RC beam. Through this study, it is seen that predicted response has a good agreement with the experimental results. Using this verified numerical model, the strengthening effect of repaired with HPCC structure is analyzed through load-displacement curve and failure modes. Also, the same numerical analysis is performed in RC beam repaired with HPCC. The effect of HPCC ductility is estimated for the overall behavior of structures. Based on the results, the fundamental data are suggested for repaired structures with HPCC.

  • PDF

Flow Stress Determination of Johnson-Cook Model of Ti-6Al-4V Material using 3D Printing Technique (3D 프린팅으로 제작한 Ti-6Al-4V 재료의 Johnson-Cook 모델의 유동 응력 결정)

  • Park, Dae-Gyoun;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • This paper investigates the compressive deformation behavior of direct metal tooling (DMT), processing titanium alloy (Ti-6Al-4V) parts under high strain loading conditions. Split Hopkinson Pressure Bar (SHPB) experiments were performed to determine the flow stress and the coefficients of the Johnson-Cook model. This model is described as a function of strain, strain rate, and temperature. SHPB experiments were performed to characterize the deformation behavior of specimens made with 3D printers, using Ti-6Al-4V material under high temperature and dynamic loading.

A Study on the Earth Pressure Characteristic of Cut-and-Cover Tunnel Lining by Centrifuge Model Experiment (원심모형시험에 의한 복개터널 복공의 토압특성에 관한 연구)

  • Lee, Myung-Woog;Park, Byung-Soo;Jung, Gil-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.107-116
    • /
    • 2004
  • This thesis is results of experimental works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand. Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Compared results model tests estimation with respect to displacements of the lining.

  • PDF

A Study on the Displacement Characteristics of Cut-and Cover Tunnel Lining by Centrifuge Model Experiment (원심모형시험에 의한 복개터널 복공의 변위특성에 관한 연구)

  • Lee, Myung-Woog;Park, Byung-Soo;Lee, Jong-Ho;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.119-130
    • /
    • 2003
  • This thesis is results of experimental works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Compared results model tests estimation with respect to displacements of the lining.

  • PDF

An Analysis on the Material Removal Mechanism of Chemical-Mechanical Polishing Process Part II: Dynamic Simulation (화학-기계적 연마 공정의 물질제거 메커니즘 해석 Part II: 동적 시뮬레이션)

  • Seok, Jong-Won;Oh, Seung-Hee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • The integrated thermal-chemical-mechanical (TCM) material removal model presented in the companion paper is dynamically simulated in this work. The model is applied to a Cu CMP process for the simulation and the results of the three individual ingredients composing the model are presented separately first. These results are then incorporated to calculate the total material removal rate (MRR) of the Cu CMP. It is shown that the non-linear trend of MRR with respect to the applied mechanical power (i.e., non-Prestonian behavior), which is not well explained with the models established in principle on conventional contact mechanics, may be due to the chemical reaction(s) varying non-linearly with the temperature in the wafer.

  • PDF

Temperature-Dependent Viscoplastic-Damage Constitutive Model for Nonlinear Compressive Behavior of Polyurethane Foam (폴리우레탄 폼 비선형 압축 거동 해석용 온도 의존 손상 점소성 구성방정식)

  • Lee, Jeong-Ho;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.437-445
    • /
    • 2016
  • Recently, polyurethane foam has been used in various industry fields to preserve temperature environment of structures, and a wide range of loads from the static to the dynamic are imposed on the material during a life period. The biggest characteristic of polyurethane foam is porosity as being polymeric material, and it is generally known that insulation performance of the material strongly depends on internal void size. In addition, polyurethane foam's mechanical behavior has high dependence on strain rate and temperature as well as being highly non-linear ductile for compression. In the non-linear compressive behavior, volume fraction of voids and elastic modulus decrease as strain increases. Therefore, in this study, temperature-dependent viscoplastic-damage constitutive model was developed to describe the non-linear compressive behavior with the aforementioned features of polyurethane foam.

Mechanical Properties of Rice Plants Under the Transverse Loading -Creep and Recovery Behavior- (측방향하중(側方向荷重)에 의한 벼줄기의 역학적특성(力學的特性)에 관한 연구(硏究)(II) -크리이프 및 회복 거동-)

  • Huh, Yun Kun
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.233-241
    • /
    • 1996
  • The mechanical properties of biological materials depend on numerous factors. The majority of these relationships are still unknown today, especially with regard to their quantitative characteristics. The reason is that biological materials constitute biomechanical systems of very complex construction, whose behavior cannot be characterized by simple physical constants, as for example can that of engineering materials. The objectives of this investigation were to determine the compression creep and recovery properties of rice stalks at various levels of applied load The compression creep and recovery behavior of the rice stalk could be predicted precisely by rheological model which approached closely to the measured values. But the coefficients of the Burgers recovery model were different from those of the creep model. The Steady state creep behavior occurred at the higher level of force and the logarithmic creep behavior occurred at the lower level of force. The mechanical model being expected the creep behavior in relation with the level of applied load, which was well explained that the rice stalk might be visco-elastic material.

  • PDF