• 제목/요약/키워드: material behavior model

검색결과 1,562건 처리시간 0.026초

Debonding failure analysis of FRP-retrofitted concrete panel under blast loading

  • Kim, Ho Jin;Yi, Na Hyun;Kim, Sung Bae;Nam, Jin Won;Ha, Ju Hyung;Kim, Jang-Ho Jay
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.479-501
    • /
    • 2011
  • Even though fiber reinforced polymer (FRP) has been widely used as a retrofitting material, the FRP behavior and effect in FRP retrofitted structure under blast loading, impulsive loading with instantaneous time duration, has not been accurately examined. The past studies have focused on the performance of FRP retrofitted structures by making simplifications in modeling, without incorporating accurate failure mechanisms of FRP. Therefore, it is critical to establish an analytical model that can properly consider the specific features of FRP material in evaluating the response of retrofitted concrete structures under blast loading. In this study, debonding failure analysis technique for FRP retrofitted concrete structure under blast loading is suggested by considering FRP material characteristics and debonding failure mechanisms as well as rate dependent failure mechanism based on a blast resisting design concept. In addition, blast simulation of FRP retrofitted RC panel is performed to validate the proposed model and analysis method. For validation of the proposed model and analysis method, the reported experimental results are compared with the debonding failure analysis results. From the comparative verification, it is confirmed that the proposed analytical model considering debonding failure of FRP is able to reasonably predict the behavior of FRP retrofitted concrete panel under blast loading.

제한투기시설에서 배출되는 여수의 근역거동 (The Near-field Behavior of Effluent discharged from Confined Disposal Facility)

  • 정대득;이중우
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.95-107
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity, so that the dredging project which is composed of excavating, removing, transporting, storing and disposing dredged material must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe manner. The most important point in dumping operations is an estimating and reducing the impacts of discharges at the dumping area. One of the most effective method for the reduction of ecological impacts at dumping area is using the schematic process composed of the sophisticated plan, precise work and predicting/reducing the impacts based on the numerical model and field observation. In this study, the numerical model is used to predict the near-field spatial fate and begavior of effluent discharged from Confined Dumping Facility(CDF) located near coastal area. To to this purpose, reappearing of tidal current was preceded. The model is then applied to Mokpo harbor, where capital dredging and maintenance dredging are conducted simultaneously and the CDF is under construction;. In the series of model case study, we found that the near-field behavior of effluent discharged from CDF was governed by the receiving water condition, outfall geometry, characteristics of efflent and CDF operating conditions.

  • PDF

ESTIMATION OF LEAK RATE THROUGH CIRCUMFERENTIAL CRACKS IN PIPES IN NUCLEAR POWER PLANTS

  • PARK, JAI HAK;CHO, YOUNG KI;KIM, SUN HYE;LEE, JIN HO
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.332-339
    • /
    • 2015
  • The leak before break (LBB) concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry-Fauske flow model and modified Henry-Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.

부재의 이력모델에 따른 건축구조물의 내진성능 평가 (Evaluation of Seismic Performance for Building Structures by Hysteresis Model of Elements)

  • 한덕전;고현
    • 한국공간구조학회논문집
    • /
    • 제9권4호
    • /
    • pp.73-80
    • /
    • 2009
  • 성능에 기초한 내진설계에서 구조물의 지진에 대한 성능평가를 위하여 구조물의 비탄성 지진거동을 정확하게 예측하는 젓이 중요하다. 정확한 시스템의 연성능력 평가를 위해서는 각부재의 하중과 변형의 관계를 보다 실제적으로 규정하는 것이 중요하다. 비선형 해석에 의한 구조물의 비탄성 거동 파악을 위해서 단순화된 부재의 하중-변형 관계 모델을 적용한다면 구조물의 실제적이고 정확한 거동을 예측하기에는 어려움이 있다. 본 논문에서는 하중-변형 관계를 Backbone 이력모델을 적용하여 단순화된 하중-변형 관계를 적용한 모델과 시스템연성능력 및 층연성능력을 비교, 평가하였다. 해석결과로 이선형 이력모델의 경우에 시스템 및 층 연성도의 과소평가는 실제구조물의 소성거동을 과소평가하는 곁과를 초래하며 보다 정착한 비선형해석을 위하여 부재의 이력모델은 Backbone 이력모델을 사용하는 것이 바람직하다.

  • PDF

제한투기시설에서 배출되는 여수의 거동 (The Behavior of Effluent Discharged from the Confined Dumping Facility)

  • 정대득;이중우
    • 한국항만학회지
    • /
    • 제14권4호
    • /
    • pp.429-439
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity. Therefore the dredging project, which is composed of excavating, removing, transporting and storing or dumping dredged material, must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe method. The most important point in dumping operations is evaluating and decreasing the impacts of dumping works at the dumping area. One of the most effective method for this purpose is using the schematic process composed of the sophisticate plan, precise work and predicting/reducing the impacts based on an numerical model being closely linked with field observation. In this study, a numerical model is used to predict the spatial transport and fate of the effluent discharged from the confined dumping facility(CDF) located at a coastal area. To achive this purpose, numerical models were used for reappearing the tidal current of concerned area. These models were then applied to Mokpo harbpr where capital dredging and maintenance dredging are being conducted simultaneously and the CDF is under construction. In series of model case study, we found that the effluent discharged from CDF was governed by the receiving water condition and outfall geometry, so that limit of near-field was 14∼500 meter down stream and 4∼150 meter in transverse direction. dilution ranged from 1.1 to 8.2 on the cases. Long-term diffusion characteristics was governed by the dilution rate during near-field behavior, ambient conditions and CDF operation modes.

  • PDF

Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches

  • Soltanieh, Ghazaleh;Yam, Michael CH.;Zhang, Jing-Zhou;Ke, Ke
    • Structural Engineering and Mechanics
    • /
    • 제81권1호
    • /
    • pp.39-50
    • /
    • 2022
  • Layer separation (delamination) is an essential threat to fiber-reinforced polymer (FRP) plates under dynamic, static, and fatigue loads. Under compressive load, the growth of delamination will lead to structural instability. The aim of this paper is to present a method using shape memory alloy (SMA) stitches to suppress the delamination growth in a FRP plate and to improve the buckling behavior of the plate with a rectangular hole. The present paper is divided into two parts. Firstly, a closed-form (CF) formulation for evaluating the buckling load of the FRP plate is presented. Secondly, the finite element method (FEM) will be employed to calculate the buckling loads of the plates which serves to validate the results obtained from the closed-form method. The novelty of this work is the development of the closed-form solution using the p-Ritz energy approach regarding the stress-dependent phase transformation of SMA to trace the equilibrium path. For the FEM, the Lagoudas constitutive model of the SMA material is implemented in FORTRAN programming language using a user material subroutines (VUMAT). The model is simulated in ABAQUS/Explicit solver due to the nature of the loading type. The cohesive zone model (CZM) is applied to simulate the delamination growth.

원심모형실험을 이용한 경량포장체의 거동특성 (Behavior characteristics of Light-Weight Pavement Using Centrifuge Test)

  • 김성겸;이관호
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.5176-5183
    • /
    • 2013
  • 일반적으로 국내에서의 경량기포콘크리트는 건축용 온도구조용 단열재나 토목용 폐공 채움재, 터널의 뒤채움재 등으로 사용되고 있으며 기타 사무실 바닥 충전재, 경량블록제조 등으로 사용되어지고 있다. 이러한 경량기포콘크리트의 사용범위를 확대하여 연약지반에 도로건설시 등간격으로 말뚝을 설치하여 기층으로 사용하는 공법을 연구중에 있다. 본 연구에서는 경량포장체의 연약지반에서의 거동 특성을 분석하기위해 지오센트리퓨지 시험을 이용하였다. 실제 포장체를 1/30로 축소한 슬래브 형태의 모형을 카올리나이트로 조성된 연약지반에서 시험을 실시하였다. 말뚝 배열은 무리말뚝(36본 $3{\times}12$)로 제작하여 사용하였다. 시험 중력 레벨은 실중력의 30배로 원심력을 작용하여 실험하였으며 이때 작용하는 경량포장체 모형의 거동특성을 바탕으로 실제 경량포장체의 거동특성을 추정하였다. FMA해석결과의 10배인 39.4kg(실제 하중35ton)의 횡하중를 가했을 경우 7.8mm(실제 거동 23.4mm)의 미세한 거동만 있었다.

Application of fiber element in the assessment of the cyclic loading behavior of RC columns

  • Sadjadi, R.;Kianoush, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제34권3호
    • /
    • pp.301-317
    • /
    • 2010
  • This paper studies the reliability of an analytical tool for predicting the lateral load-deformation response of RC columns while subjected to lateral cyclic displacements and axial load. The analytical tool in this study is based on a fiber element model implemented into the program DRAIN-2DX (fiber element). The response of RC column under cyclic displacement is defined by the behavior of concrete, and reinforcing steel under general reversed-cyclic loading. A tri-linear stress-strain relationship for the cyclic behavior of steel is proposed and the improvement in the analytical results is studied. This study only considers the behavior of columns with flexural dominant mode of failure. It is concluded that with the implementation of appropriate constitutive material models, the described analytical tools can predict the response of the columns with reasonable accuracy when compared to experimental data.

일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측 (Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition)

  • 이억섭;김승권
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF

Nonlinear large deflection buckling analysis of compression rod with different moduli

  • Yao, Wenjuan;Ma, Jianwei;Gao, Jinling;Qiu, Yuanzhong
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.855-875
    • /
    • 2015
  • Many novel materials exhibit a property of different elastic moduli in tension and compression. One such material is graphene, a wonder material, which has the highest strength yet measured. Investigations on buckling problems for structures with different moduli are scarce. To address this new problem, firstly, the nondimensional expression of the relation between offset of neutral axis and deflection curve is derived based on the phased integration method, and then using the energy method, load-deflection relation of the rod is determined; Secondly, based on the improved constitutive model for different moduli, large deformation finite element formulations are developed and combined with the arc-length method, finite element iterative program for rods with different moduli is established to obtain buckling critical loads; Thirdly, material mechanical properties tests of graphite, which is the raw material of graphene, are performed to measure the tensile and compressive elastic moduli, moreover, buckling tests are also conducted to investigate the buckling behavior of this kind of graphite rod. By comparing the calculation results of the energy method and finite element method with those of laboratory tests, the analytical model and finite element numerical model are demonstrated to be accurate and reliable. The results show that it may lead to unsafe results if the classic theory was still adopted to determine the buckling loads of those rods composed of a material having different moduli. The proposed models could provide a novel approach for further investigation of non-linear mechanical behavior for other structures with different moduli.