• 제목/요약/키워드: material behavior model

Search Result 1,562, Processing Time 0.029 seconds

Centrifuge Model Experiments on Behaviour Characterisitc in Forced Replacement Method (강제치환 거동특성에 관한 원심모형실험)

  • Lee, Jong-Ho;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.131-137
    • /
    • 2003
  • This thesis is results of centrifuge model experiments to investigate the behavior of replacement method in dredged and reclaimed ground. For experimental works, centrifuge model tests were carried out to investigate the behavior of replacement method in soft clay ground. Basic soil property tests were performed to find mechanical properties of clay soil sampled from the southern coast of Korea which was used for ground material in the centrifuge model tests. Reconstituted clay ground of model was prepared by applying preconsolidation pressure in 1g condition with specially built model container. Centrifuge model tests were carried out under the artificially accelerated gravitational level of 50g. Replacing material of leads having a certain degree of angularity was used and placed until the settlement of embankment of replacing material was reached to the equilibrium state. Vertical displacement of replacing material was monitored during tests. Depth and shape of replacement, especially the slope of penetrated replacing material and water contents of clay ground were measured after finishing tests. Model tests of investigating the stability of embankment after backfilling were also performed to simulate the behavior of the dike treated with replacement and backfilled with sandy material. As a result of centrifuge model test, the behavior of replacement, the mechanism of the replacing material being penetrated into clay ground and depth of replacement were evaluated.

  • PDF

An endochronic model of material function and its application to plastic behavior of metals under asymmetric cyclic loadings

  • Yeh, Wei-Ching;Lin, Hsi-Yen;Jhaot, Jhen-Bo
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.423-444
    • /
    • 2007
  • By using the incremental form of the endochronic theory of plasticity, a model of material function is proposed in this paper to investigate plastic behavior. By comparing the stress-strain hysteresis loop, the theory is shown to agree well with the experimental results, especially in the evolution of peak stress values of SAE 4340 steel loaded by cyclic loading with various amplitudes. Depending on the choice of material parameters, the present model can substantially result in six categories of material function, each of which can behave differently with respect to an identical deformation history. In addition, the present model of material function is shown to be capable of describing the behavior of erasure of memory of materials, as experimentally observed by Lamba and Sidebottom (1978).

A Computational Study on Creep-Fatigue behavior of Weld Interface Crack (용접 계면균열의 크리프-피로 거동에 대한 수치해석적 연구)

  • 이진상;윤기봉
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.264-266
    • /
    • 2000
  • In this study, analysis of creep-fatigue behavior of low alloy steel weld was performed. An interface was employed along the crack plane to simulate the interface between base metal and weld metal. A trapezoidal waveshapes was loaded cyclically and analysis result was compared with that of monotonic load. The material was assumed as elastic-plastic-secondary creeping material. Because the isotropic hardening plasticity model used in the last study cannot simulate the behavior of material under cyclic load, the linear kinematic hardening plasticity model was used. The behavior of strain field and $C_{t}$ parameter was obtained.d.

  • PDF

Centrifuge Model Tests on Characteristics in Forced Replacement Method for Soft Ocean Ground to Build Coastal Structures (해안구조물 축조를 위한 해양연약지반의 강제치환 특성에 관한 원심모형실험)

  • Park, Byung-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.42-48
    • /
    • 2006
  • This paper shows theresults of centrifuge model experiments to investigate the behavior of a replacement method in dredged and reclaimed ground. For this experimental work, centrifuge model tests were carried out to investigate the behavior of a replacement method in soft clay ground. Basic soil property tests were performed to find the mechanical properties of clay soil sampled from the southern coast of Korea, which was used for the ground material in the centrifuge model tests. The reconstituted clay ground of the model was prepared by applying reconsolidntion pressure in a 1 g condition with a specially built model container. Centrifuge model tests were carried out under the artificially accelerated gravitational level of 50 g. Replacement material of lead with a certain degree of angularity was used and placed until the settlement of the replacement material embankment reached a state of equilibrium. Vertical displacement of the replacement material was monitored during tests. The depth and shape of the replacement, especially the slope of the penetrated material and the water content of the clay ground were measured after finishing tests. Model tests for investigating the stability of an embankment after backfilling were also performed to simulate the behavior of a dike treated with replacement and backfilled with sandy material. As a result of the centrifuge model test, the behavior of the replacement, the mechanism of the replacement material being penetrated into clay ground, and the depth of the replacement were evaluated.

A Study on the Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement. (콘크리트 포장 축소모델 배합의 재료적 상사성에 관한 연구)

  • 배주성;고영주;김재경;김평수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.103-110
    • /
    • 1997
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate materials similitude between the prototype and the model concrete. Based on th results of experiments, We compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-strain curves of prototype concrete, it is important that various mix as of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

  • PDF

Analysis on the Cracking Behavior for Massive Concrete with Age-Dependent Microplane Model (재령효과를 고려한 미소면 모델을 적용한 매스콘크리트의 균열거동 해석)

  • Lee, Yun;Kim, Jin-Keun;Lee, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.591-594
    • /
    • 2005
  • Concrete structure that has been constructed in real field is on multi-axial stress state condition. After placing of concrete, hydration heat and shrinkage of concrete can cause various stress conditions with respect to the restraint level and condition. So, to predict the early age behavior of concrete structure, multi-axial material model is required and microplane model is acceptable. Recently, many studies have been performed on the microplane model, but the model developed up to now has been related to hardened concrete that material property is constant with concrete age. So, it is inappropriate to apply this model immediately to analyze the early age behavior of concrete. In this study, microplane model that can predict early age behavior of concrete was developed and cracking analysis using that was performed to describe cracking behavior for massive concrete sturucture.

  • PDF

Crack Analysis of the Quasi-Brittle Materials Using a Stochastic Model (물성의 확륙적 분포를 이용한 Quasi-Brittle 재료의 균열해석)

  • 임윤목;김문겸;신승교;박진완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.217-222
    • /
    • 1999
  • Usually, the failure of quasi-brittle materials is numerically difficult to describe because of the localization process with softening behavior. In this study, ADLE(Axial Deformation Link Elements) with stochastic material properties are developed to simulate the quasi-brittle material failure behavior. The ADLE method is adopted both Fictitious Crack Model and stochastic method to implement the fracture behavior with the localization behavior of quasi-brittle materials. The main objective of this paper is to show the mash independency and the capability of ADLE for the failure behavior of a quasi-brittle materials.

  • PDF

The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks

  • Haeri, Hadi;Sarfarazi, V.
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.201-214
    • /
    • 2016
  • In this paper, a multilaminate based model have been developed and presented to predict the strain hardening behavior of rock. In this multilaminate model, the stress-strain behavior of a material is obtained by integrating the mechanical response of an infinite number of predefined oriented planes passing through a material point. Essential features such as the variable deformations hypothesis and multilaminate model are discussed. The methodology to be discussed here is modeling of strains on the 13 laminates passing through a point in each loading step. Upon the presented methodology, more attention has been given to hardening in non-linear behaviour of rock in going from the peak to residual strengths. The predictions of the derived stress-strain model are compared to experimental results for marble, sandstone and dense Cambria sand. The comparisons demonstrate the ability of this model to reproduce accurately the mechanical behavior of rocks.

Creep Behavior Analysis of High Cr Steel Using the Constitutive Model Based on Microstructure (미세조직기반 구성모델을 이용한 고크롬강의 크리프 거동 해석)

  • 윤승채;서민홍;백경호;김성호;류우석;김형섭
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.160-167
    • /
    • 2004
  • In order to theoretically analyze the creep behavior of high Cr steel at $600^{\circ}C$, a unified elasto-viscoplastic constitutive model based on the consideration of dislocation density is proposed. A combination of a kinetic equation describing the mechanical response of a material at a given microstructure in terms of dislocation glide and evolution equations for internal variables characterizing the microstructure provides the constitutive equations of the model. Microstructural features of the material such as the grain size and spacing between second phase particles are directly implemented in the constitutive equations. The internal variables are associated with the total dislocation density in a simple model. The model has a modular structure and can be adjusted to describe a creep behavior using the material parameters obtained from uniaxial tensile tests.

Prediction of Mechanical Behavior for Carbon Black Added Natural Rubber Using Hyperelastic Constitutive Model

  • Kim, Beomkeun
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.308-316
    • /
    • 2016
  • The rubber materials are widely used in automobile industry due to their capability of a large amount of elastic deformation under a force. Current trend of design process requires prediction of functional properties of parts at early stage. The behavior of rubber material can be modeled using strain energy density function. In this study, five different strain energy density functions - Neo-Hookean model, Reduced Polynomial $2^{nd}$ model, Ogden $3^{rd}$ model, Arruda Boyce model and Van der Waals model - were used to estimate the behavior of carbon black added natural rubber under uniaxial load. Two kinds of tests - uniaxial tension test and biaxial tension test - were performed and used to correlate the coefficients of the strain energy density function. Numerical simulations were carried out using finite element analysis and compared with experimental results. Simulation revealed that Ogden $3^{rd}$ model predicted the behavior of carbon added natural rubber under uniaxial load regardless of experimental data selection for coefficient correlation. However, Reduced Polynomial $2^{nd}$, Ogden $3^{rd}$, and Van der Waals with uniaxial tension test and biaxial tension test data selected for coefficient correlation showed close estimation of behavior of biaxial tension test. Reduced Polynomial $2^{nd}$ model predicted the behavior of biaxial tension test most closely.