• 제목/요약/키워드: material area

Search Result 4,903, Processing Time 0.154 seconds

Study on PVA mode using the UV curable reactive mesogen (RM) (광경화성 단분자를 이용한 PVA모드의 8-도메인 형성방안 연구)

  • Kim, Woo-Il;Kim, Sung-Min;Cho, In-Young;Kim, Mi-Young;Son, Jong-Ho;Ryu, Jae-Jin;Kim, Kyeong-Hyeon;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.339-340
    • /
    • 2008
  • The Conventional PVA (patterned vertical alignment) mode showed characteristics of 8-domain using T-T type or C-C type. But these methods have disadvantages such as decreasing aspect ratio and transmittance. In order to resolve these problems, in this paper we have studied a new 8-domain method which is partially using the UV curable reactive mesogen (RM) that is a role in surface stabilization. The characteristic of off-axis color shift is decreased because the part of surface stabilized area is compensated to other area in a pixel. Consequently, the device shows improved color shift by 8-domain.

  • PDF

Phenomena of Hyperbolic Heat Conduction in the Hot Mold with an Inner Defect (내부결함이 있는 고온 금형에서의 쌍곡선형 열전도 현상)

  • Lee, Gwan-Su;Im, Gwang-Ok;Jo, Hyeong-Cheol;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.952-957
    • /
    • 2001
  • In the glass forming process, the phenomena of hyperbolic heat conduction in the hot mold with an inner defect are studied analytically. It is shown that the temperature predicted by the parabolic model is underestimated compared to the one by the hyperbolic model. As the rmal wave is reflected from the area with defects and then arrives at the surface supplied by the heat flux, it is expected that there exists thermal shock in the materials. The area with defects is assumed to be adiabatic since its thermal conductivity is much lower compared to the one of the material. The results also indicate that the sudden temperature -jump in the mold surface can cause diverse problems such as glass defect (embryo mark, etc), oxidation of mold and coating, and change of material properties.

An Finite Element Analysis for Elasto-Plastic Thermal Stresses Considerating Strain Hysteresis at Quenching Process of Carbon Steel(II) - Analysis of elasto-viscoplastic thermal stress - (탄소강의 퀜칭처리 과정에서 변형율이력을 고려한 탄소성열응력의 유한요소 해석(II) - 탄점소성 열응력 해석 -)

  • Kim, Ok-Sam;Koo, Bon-Kwon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.147-158
    • /
    • 1996
  • Generally, analytical consideration on the behaviour of metallic structures during quenching process, and analysis on the thermal stress and deformation after heat treatment are very important in presumption of crack and distorsion of quenched material. In this study a set of constitute equations relevant to the analysis of thermo elasto-viscoplastic materials with strain hysteresis during quenching process way presented on the basis of contimuum thermo-dynamics mechanics. The thermal stresses were numerically calculated by finite element technique of weighted residual method and the principle of virtual work. In the calculation process, the temperature depandency of physical and mechaniclal properties of the material in consideration. On the distribution of elasto-viscoplastic thermal stresses according to radial direction, axial and tangential stress are tensile stress(50MPa, 1.5GPa and 300MPa) in surface and compressive stress(-1.2GPa, -1.14GPa and -750MPa) in the inner part on the other hand, radial stress is tensile stress(900MPa) in area of analysis. According to axial direction, tangential stress gradients are average 60MPa/mm on the whole. The reversion of stress takes place at 11.5 to 16.8mm from the center in area of analysing.

  • PDF

Effect Analysis in Laser Metal Deposition of SKD61 by Track Pitch (트랙 이행거리에 따른 SKD61 재질의 레이저 메탈 디포지션 기초 특성 분석)

  • Kim, Won-Hyuck;Jung, Byung-Hun;Oh, Myeong-Hwan;Choi, Seong-Won;Kang, Dae Min
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.94-99
    • /
    • 2014
  • In this study, AISI M2 powder was selected primarily through various literature in order to improve the hardness and wear resistance. Among the laser metal deposition parameters, laser power was studied to improve the deposition efficiency in the laser metal deposition using a diode pumped disk laser. SKD61 hot work steel plate and AISI M2 powder were used as a substrate and powder for laser metal deposition, respectively. Fixed parameters are CTWD, focal position, travel speed, powder feed rate, etc. Experiments for the laser metal deposition were carried out by changing laser power. Through optical micrographs analysis of cross-section in LMD track, effect of the major parameters were predicted by track pitch. As the track pitch increased, so the reheated zone width, the overlap width and the minimum thickness was decreased. The hardness was decreased in the HAZ area, the hardness in the reheated HAZ area was decreased significantly and regularly in particular.

Rigid-Plastic Finite Element Analysis of Axisymmetric Forward Extrusion (강소성 유한요소법 을 이용한 축대칭 전방 압출 해석)

  • 양동열;오병수;이중홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.452-462
    • /
    • 1985
  • The axisymmetric forward extrusion is analyzed by using the rigid-plastic finite element formulation. The distribution of stresses and strains as well as the deformation pattern in solid extrusion is very important for the improvement of product quality. The initial velocity field is determined by assuming the material as a Newtonian fluid through an arbitrarily shaped axisymmetric die. The workhardening effect and the friction of the die-material interface are considered in the formulation. Some reduction of area and die shapes(conical and biquadratic-curved) are chosen for computation. Experiments are carried out for steel alloy(SCM4) specimens using conical and curved dies. It is found that experimental observation is in good agreement with FEM results. The strain distribution is curved(biquadratic) dies is shown to be more uniform than in conical dies at the same reduction of area.

A Study on the Within Wafer Non-uniformity of Oxide Film in CMP (CMP 패드 강성에 따른 산화막 불균일성(WIWNU)에 관한 연구)

  • Park, Ki-Hyun;Jung, Jae-Woo;Park, Boum-Young;Seo, Heon-Deok;Lee, Hyun-Seop;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.521-526
    • /
    • 2005
  • Within wafer non-uniformity(WIWNU) improves as the stiffness of pad decrease. We designed the pad groove to study of pad stiffness on WIWNU in Chemical mechanical polishing(CMP) and measured the pad stiffness according to groove width. The groove influences effective pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. An Increase of the apparent contact area of pad by groove width results in decrease of effective pad stiffness. WIWNU and profile of removal tate improved as effective pad stiffness decreased. Because grooving the pad reduce its effective stiffness and it makes slurry distribution to be uniform. Futhermore, it ensures that pad conforms to wafer-scale flatness variability. By grooving the top pad, it is possible to reduce its stiffness and hence reduce WIWNU and edge effect.

A Study of End Point Detection Measurement for STI-CMP Applications (STI-CMP 공정 적용을 위한 연마 정지점 고찰)

  • 김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.175-184
    • /
    • 2001
  • In this study, the improved throughput and stability in device fabrication could be obtained by applying CMP process to STi structue in 0.18 um semiconductor device. To employ the CMP process in STI structure, the Reverse Moat Process used to be added after STI Fill, as a result, the process became more complex and the defect were seriously increased than they had been,. Removal rate of each thin film in STI CMP was not uniform, so, the device must have been affected. That is, in case of excessive CMP, the damage on the active area was occurred, and in the case of insufficient CMP nitride remaining was happened on that area. Both of them deteriorated device characteristics. As a solution to these problems, the development of slurry having high removal rate and high oxide to nitride selectivity has been studied. The process using this slurry afford low defect levels, improved yield, and a simplified process flow. In this study, we evaluated the 'High Selectivity Slurry' to do a global planarization without reverse moat step, and also we evaluated EPD(Eend Point Detection) system with which 'in-situ end point detection' is possible.

  • PDF

Prediction of Environmental Change and Mitigation plan for large scale reclamation (대규모 매립에 대한 환경영향예측과 저감방안에 관한 연구)

  • Shin, Bum-Shick;Kim, Kyu-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.95-100
    • /
    • 2010
  • In this study we predicted some of the negative effects on the ocean ecosystem and water quality, caused by a coastal reclamation project in semi-closed bay that makes it extremely difficult to be purified by natural process. In order to predict change of water quality triggered by coastal reclamation, the 3D hydrodynamic model and material cycle model are used. And we suggested new ecological park, an artificial beach and eco-friendly revetments on the reclamation area to mitigate the environmental impacts affecting this area using the numerical simulation results and observation data.

A Study on Central Bursting Defects in Forward Extrusion by the Finite Element Method (유한요소법을 이용한 전방압출공정의 내부결함에 관한 연구)

  • Kim, T.H.;Lee, J.H.;Kwon, H.H.;Kim, B.M.;Kang, B.S.;Choi, J.C.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.66-74
    • /
    • 1992
  • According to the variation of hydrostatic pressure on the central axis of deformable material, the V-shaped central bursting defect may be created in extrusion or drawing processes. The process factors which affect the generation of defects are semi-angle of die, reduction ratio of cross-sectional area, friction factor, material properties and so on. The combination of these factors can determine the possibility of defect creation and the shape of various round holes which have been created inside already. By the rigid plastic finite element method, this paper describes the observations of change in shape of round holes with process conditions such as semi-angle of die, reduction ratio of cross-sectional area and friction factor at the non-steady state of axisymmetrical extrusion process when the round hole is already existed inside the original billet. Also, the effects of process factors are investigated to prevent the possible defects.

  • PDF

Electrical Characteristics of PRAM Cell with Nanoscale Electrode Contact Size

  • Nam, Gi-Hyeon;Yun, Yeong-Jun;Maeng, Gwang-Seok;Kim, Gyeong-Mi;Kim, Jeong-Eun;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.282-282
    • /
    • 2011
  • Low power consuming operation of phase-change random access memory (PRAM) can be achieved by confining the switching volume of phase change media into nanometer scale. Ge2Sb2Te5 (GST) is one of the best materials for the phase change random access memory (PRAM) because the GST has two stable states, namely, high and low resistance values, which correspond to the amorphous and crystalline phases of GST, respectively. However, achieving the fast operation speed at lower current requires an alternative chalcogenide material to replace the GST and shrinking the dimension of programmable volume. In this paper, we have fabricated nanoscale contact area on Ge2Sb2Te5 thin films with trimming process. The GST material was fabricated by melt quenching method and the GST thin films were deposited with thickness of 100 nm by the electron beam evaporation system. As a result, the reset current can be safely scaled down by reducing the device contact area and we could confirmed the phase-change characteristics by applying voltage pulses.

  • PDF