• Title/Summary/Keyword: material area

Search Result 4,893, Processing Time 0.033 seconds

A Study on Structural Safety of a Urethane Wheel Using FEM (유한요소법을 이용한 우레탄 휠의 구조 안전성에 관한 연구)

  • 송하종;정일호;이수호;박태원;박중경;이형;조동협;김혁;이경목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1042-1047
    • /
    • 2004
  • Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded in rubber or plastic material. Especially, urethane is high in mechanical strength and anti-abrasive. Hereby, an urethane coated aluminum wheel is used for supporting of OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety for applied maximum dynamic load on a urethane wheel needs to be carefully examined while driving. Therefore, we have performed the dynamic simulation on the OHT vehicle model. Although the area definition of applied load can be obtained from the previous study of Hertzian and Non-Hertzian contact force model when having exact properties of contact material, static analysis is simulated, since the proper material properties of urethane have not been guaranteed, after we have performed the actual contact area test for each load. In case of this study, the method of distributing load for each node is included. Finally, in comparison with result of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we have verified the safety of the wheel. After all, we have performed a mode analysis using the obtained material properties. With the result, we have the reliable finite element model.

  • PDF

Let's feel warmth with VR sensing modeling (온기를 느끼게 하는 VR 센싱 모델링)

  • Moon, Dongmin;Chin, Seongah
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.341-346
    • /
    • 2020
  • Motion sickness or dizziness caused by visual and other sensory inconsistencies In virtual reality content seems to be a major problem. To solve the problem, research has been actively underway to satisfy the five senses. Among them, the most researches on the touch are many studies on hardness and texture, but the studies on temperature seem relatively small. Therefore, in this paper, we present a calculation model that can sense the temperature derived from the principle of heat energy moving from high temperature to low temperature, not the temperature of the material. Because heat energy is determined by the heat conductivity, temperature, and area of contact, which are the inherent characteristics of a material, the degree of heat felt by a person depends on the type of material, the temperature of the material and the area of contact with the object. The thermal energy shift per unit time of the material was calculated using the thermal conductivity law and the specific heat formula, and the thermal energy reproduction method that changes per unit time of the material was studied using the thermoelectric element.

A Study on Structural Safety of a Urethane Wheel Using FEM (유한요소법을 이용한 우레탄 휠의 구조 안전성에 관한 연구)

  • Song Ha Jong;Jong Il Ho;Yoon Ji Won;Jun Kab Jin;Park Joong Kyung;Lee Hyung;Park Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.114-120
    • /
    • 2005
  • Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded with rubber or plastic material. In particular, urethane is high in mechanical strength and anti-abrasive. Hereby, a urethane coated aluminum wheel is used to support of the OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety fur applied maximum dynamic load on a urethane wheel must be examined carefully while driving. Therefore, we performed a dynamic simulation on the OHT vehicle model and we determined the driving load. The area definition of applied load may be obtained from the previous study of Hertzian and Non-Hertzian contact force model having exact properties of contact material. But the static analysis is simulated after we have performed the actual contact area test for each load since the proper material properties of urethane have not been guaranteed. In this study, the method of distributing loads for each node is included. Finally, in coMParison with the results of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we verified the safety of the wheel. Finally, we performed a mode analysis using the obtained material properties. With these results, we presented a reliable finite element model.

Anti-reflection Coating of PDMS by Screen-printing on Large Area of Silicon Solar Cells (대면적 실리콘 태양전지의 PDMS 도포에 의한 반사방지막 특성)

  • MyeongSeob, Sim;Yujin, Jung;Dongjin, Choi;HyunJung, Park;Yoonmook, Kang;Donghwan, Kim;Hae-Seok, Lee
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.95-100
    • /
    • 2022
  • Solar cell is a device that converts photon energy into electrical energy. Therefore, absorption of solar spectrum light is one of the most important characteristics to design the solar cell structures. Various methods have emerged to reduce optical losses, such as textured surfaces, back contact solar cells, anti-reflection layers. Here, the anti-reflection coating (ARC) layer is typically utilized whose refractive index value is between air (~1) and silicon (~4) such as SiNx layer (~1.9). This research is to print a material called polydimethylsiloxane (PDMS) to form a double anti-reflection layer. Light with wavelength in the range of 0.3 to 1.2 micrometers does not share a wavelength with solar cells. It is confirmed that the refractive index of PDMS (~1.4) is an ARC layer which decreases the reflectance of light absorption region on typical p-type solar cells with SiNx layer surface. Optimized PDMS printing with analyzing optical property for cell structure can be the effective way against outer effects by encapsulation.

A study on the physical description area of cataloging rules on microcomputer software (마이크로컴퓨터 소프트웨어에 관한 목록규칙의 형태사항 연구)

  • 신용운
    • Journal of Korean Library and Information Science Society
    • /
    • v.16
    • /
    • pp.99-128
    • /
    • 1989
  • The purpose of this study is to examine the problems of the each cataloging rules about the physical description area that generated the greatest controversy in the cataloging of microcomputer software, and to suggest solutions of these problems. The results of the study can be summarized as follows: 1. Because the physical description area of materials is to identify the physical attributes of the carrier, file description might better described in the material specific details area. 2. Integrated software that related file is linked together need to be used terms that represented any type of software 3. It is desirable that the term 'computer' is to be used as a modifier to devide the carrier of microcomputer and other non book materials. 4. System requirements would better described in a note area rather than physical, description area. 5. It is desirable that other physical details such as recording density, tracks, etc., is to describe in the physical description area, since such information is to represent specifics of the carrier.

  • PDF

Characteristics of Electron Beam Extraction in Large Area Electron Beam Generator

  • Woo, Sung-Hun;Lee, Hong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.10-14
    • /
    • 2004
  • A large area electron beam generator has been developed for industrial applications, for example, waste water cleaning, flue gas treatment, and food pasteurization. The operational principle is based on the emission of secondary electrons from the cathode when ions in the plasma contact the cathode, which are accelerated toward the exit window by the gradient of the electric potential. Conventional electron beam generators require an electron beam scanning mechanism because a small area thermal electron emitter is used. The electron beam of the large area electron beam generator does not need to be scanned over target material because the beam area is considerable. We have fabricated a large area electron beam generator with peak energy of 200keV, and a beam diameter of 200mm. The electron beam current has been investigated as a function of accelerating voltage and distance from the extracting window while its radial distribution in front of the extracting window has been also measured.

Characterization of Carbon Nanofiber Electrode with different Ketjenblack Conducting Material Mixing Amount Using EDLC (Ketjenblack 전도제 혼합량에 따른 EDLC용 탄소나노섬유 전극의 특성)

  • Choi, Weon-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • Carbon nanofibers with nano-sized structures were evaluated as a active material using supercacitor electrode which could store electrochemical energy reversibly. A feasibility of EDLC electrode was estimated with specific surface area measurement by BET method and mesopore structure of carbon nanofiber surface could be explained electrochemical absorption-desorption in aqueous electrolyte. A capacitance of carbon nanofiber electrode was increased gradually, depending on the ratio of Ketjenblack as a conducting material. Ketjen Black $20{\sim}25\;wt.%$ ratio in electrode was observed a suitable amount of conducting material by cyclic voltametry results.

Estimation of Specific Gravity of Soil Mixture (배합비에 따른 혼합토의 비중 산정)

  • Shin, Hyun-Young;Kim, Kyoung-O;Kim, You-Seok;Park, Jin-Yoo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.951-954
    • /
    • 2010
  • There are lots of soft ground improvement methods which is consist of different materials. In the analysis and design, composite ground method is usually regarded. Composite ground method considers the area replacement ratio as a key parameter to combine the physical and mechanical characteristics of tow different material. In this study, using composite material consist of three different materials which have different diameters, series of specific gravity test were performed according to KS F 2308, to investigate the applicability of composite ground method. As a result, it is found that composite material which is consist of fine grained soil and granular soil has a high applicability of composite ground method. This result means that, in estimating of ground properties of composite material which is consist of similar fine grained material such as cement mixing etc., composite ground method has a less applicability.

  • PDF

Development of Bastard Indigo (Amorpha fraticosa) Utilization for Pulping (쪽제비 싸리의 팔프 이용(利用))

  • 산림청 임업시험장
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.39-41
    • /
    • 1974
  • Bastard indigo, prevailing shrub species planted in erosion control work to constitute vegetation, is proved to be usefull for pulp material other than existing usage of green manure or fuel. Pulp made from bastard indigo is good enough for filler pulp though the quality of it is not remarkably excellent. (1) Sorts of paper possible to make from this pulp. Packing paper of medium grade. (general packing paper except heavy packing) (2) Traits of this pulp as for pulp material (A) It is more preferable than annual plants in these respects, ego collection, transport and storage of pulp material, and yield, freeness and chemical consumption of pulp. (B) Annual probable production of pulp material per ha from this plant is higher than that from long-term tree species or similar to that from fast growing species. (C) Its cultivation on eroded area is welcomed and consecutive annual production of material by copice method is also proved possible.

  • PDF

A Study on the Argon Laser Assisted Thermochemical Micro Etching (레이저를 이용한 미세에칭에 관한 연구)

  • 박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.844-847
    • /
    • 2001
  • The application of laser direct etching has been discussed, and believed that the process is a very powerful method for micro machining. This study is focused on the micro patterning technology using laser direct etching process with no chemical damage of the material surface. A new introduced concept of energy synergy effect for surface micro machining is the combination of chemically ion reaction and laser thermal process. The etchant can't etch the material in room temperature, and used Ar laser has not power enough to machine. But, the machining is occurred in local area of the material by the combined energy. Using this process, the material is especially prevented from chemical damage for electric property. We have tested this new concept, and achieved a line with $1{mu}m$ width. The Ar laser with 488nm wavelength was used. The material was Si(100) wafer, and etchant is KOH solution. The application and flexibility of this process is in great hopes for MEMS structures and fabrication of the micro electric device parts.

  • PDF