• Title/Summary/Keyword: matching boundary condition

Search Result 45, Processing Time 0.025 seconds

Stability of matching boundary conditions for diatomic chain and square lattice

  • Ji, Songsong;Tang, Shaoqiang
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.255-268
    • /
    • 2018
  • Stability of MBC1, a specific matching boundary condition, is proved for atomic simulations of a diatomic chain. The boundary condition and the Newton equations that govern the atomic dynamics form a coupled system. Energy functions that decay along with time are constructed for both the boundary with the same type atoms and the one with different type atoms. For a nonlinear chain, MBC1 is also shown stable. Numerical verifications are presented. Moreover, MBC1 is proved to be stable for a two dimensional square lattice.

Efficient electromagnetic boundary conditions to accelerate optimization of RF devices

  • Cho, Yong-Heui
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.50-55
    • /
    • 2011
  • To achieve efficient field formulations and fast numerical computations, the reciprocal relations and equivalence between tangential and normal boundary conditions for electromagnetic fields are discussed in terms of the Maxwell's differential equations. Using the equivalence of each boundary condition, we propose the six essential boundary conditions, which may be applicable to matching electromagnetic discontinuities to efficiently design RF devices. In order to verify our approach, the reflection characteristics of a rectangular waveguide step are compared with respect to six essential boundary conditions.

Design of Matching Condition for Ni-Zn Ferrite/Rubber composite Absorber (Ni-Zn Ferrite/Rubber 복합형 흡수체의 정합조건 설계)

  • Shin, K.H.;Kim, H.G.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1406-1408
    • /
    • 1994
  • In recently, there is growing demand for microwave absorbing matrial, and for the design method of microwave absorber. We developed a new method to design the matching frequency and matrial thick for ferrite/rubber composite absorber. Ni-Zn ferrite prepared with coprecipitation was compounded with silicon rubber, and, subsequently, pressed to ring specimen. The matrial constant of the ferrite/rubber composite absorber was used to design the matching frequency and matrial thick with matching map. In this study, we could predict matching condition from the design method. Foremore, using matching boundary map, we could also predict the condition of over 20[dB] attenuation.

  • PDF

Analysis of TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Layer Using Point Matching Method (Point Matching Method를 이용한 접지된 유전체층 위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.371-375
    • /
    • 2014
  • In this paper, the solutions of TE(transverse electric) scattering problems by a resistive strip grating over a grounded dielectric layer are analyzed by applying the PMM(point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients and the resistive boundary condition is used for the relationship between the tangential magnetic field and the induced surface current density on the resistive strip. The induced surface current density of resistive strip is obtained by difference of the up and down of the magnetic field in two boundary areas of the resistive strip. The numerical results for reflected power of zeroth order mode analyzed by according as the resistivity, the width and spacing of resistive strip, the relative permittivity and thickness of dielectric layer, and incident angles. The numerical results shown in good agreement compared to those of the existing papers using FGMM(fourier galerkin moment method).

UNIVERSAL DISPERSION EQUATION FOR MAGNETOSTATIC WAVES(MSW)

  • Wenzhong, Hu
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.383-386
    • /
    • 1995
  • A universal dispersion equation for magnetostatic waves(MSW) propagating in the film with arbitrary-multiple magnetic layers magnetized in an arbitrary direction was derived with a matching boundary condition method. The computing result curves of delay time were shown.

  • PDF

Analysis of the Coplanar Waveguide Shielded by Rectangular Waveguide (구형 도파관으로 차폐된 코플래너 도파관 해석)

  • 황정섭;이상설
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.19-25
    • /
    • 1993
  • By using the point matching method, the coplanar waveguide shielded by the rectangular waveguide has been analyzed. The particular potential solution of C.P.W has been obtained from the boundary condition by using the point matching method. The line capacitance has been obtained from the total charge of the center conductor per length. The effective dielectric constant and the line impedance have been obtained from the line capacitance of C.P.W.

  • PDF

A Study on TE Scattering by a Conductive Strip Grating Over Grounded Two Dielectric Layers (접지된 2개 유전체층 위의 완전도체띠 격자구조에 의한 TE 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.65-70
    • /
    • 2015
  • In this paper, the solutions of TE (transverse electric) scattering problems by a conductive strip grating over grounded two dielectric layers are analyzed by applying the PMM (point matching method) known as a numerical method of electromagnetic fileld. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the conductive boundary condition apply to analysis of conducting strip. The most normalized reflected powers of the sharp variations in minimum values are scattered in direction of the other angles except incident angle. The numerical results for normalized reflected power are analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of the two dielectric layers, and incident angles. The numerical results of present numericl analysis are shown in good agreement compared to those of the existing papers using FGMM (fourier galerkin moment method).

A Study on TE Scattering by a Conductive Strip Grating Over Two Dielectric Layers (2개 유전체층 위의 완전도체띠 격자구조에 의한 TE 산란에 관한 연구)

  • Yoon, Uei-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.87-92
    • /
    • 2016
  • In this paper, the solutions of TE(transverse electric) scattering problems by a conductive strip grating over two dielectric layers are analyzed by applying the PMM(point matching method) known as a numerical method of electromagnetic field. The boundary conditions are applied to obtain the unknown field coefficients, the scattered electromagnetic fields are expanded in a series of Floquet mode functions, and the conductive boundary condition apply to analysis of conducting strip. The most normalized reflected and transmitted powers having a sharp variations are scattered in direction of the other angles except incident angle. The numerical results for the normalized reflected and transmitted powers are analyzed by according as the width and spacing of conductive strip, incident angles, and the relative permittivity and thickness of the two dielectric layers. To confirm the validity of this paper, the numerical results of presented structure are shown in good agreement compared to those of the existing papers.

A Study on TE Scattering by a Conductive Strip Grating Over a Dielectric Layer (유전체층 위의 완전도체띠 격자구조에 의한 TE 산란에 관한 연구)

  • Yoon, Uei-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4158-4163
    • /
    • 2015
  • In this paper, the solutions of TE(transverse electric) scattering problems by a condutive strip grating over a dielectric layer are analyzed by using the FGMM(fourier galerkin moment method) and PMM(point matching method) known as a numerical method of electromagnetic fileld. The scattered electromagnetic fields are expanded in a series of floguet mode functions, the boundary conditions are applied to obtain the unknown field coefficients, and the conductive boundary condition is used for the relationship between the tangential electric field and the induced surface current density on the strip. The numerical results for the reflected and transmitted power of zeroth mode analyzed by according as the width and spacing of conductive strip, the relative permittivity and thickness of dielectric layer, and incident angles. Generally, according to the relative permittivity of dielectric layer increased, also the normalized reflected power of zeroth mode increased. To examine the accruacy of this paper, the numerical results of FGMM shown in good agreement compared to those of PMM.

Heat jet approach for finite temperature atomic simulations of two-dimensional square lattice

  • Liu, Baiyili;Tang, Shaoqiang
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.371-393
    • /
    • 2016
  • We propose a heat jet approach for a two-dimensional square lattice with nearest neighbouring harmonic interaction. First, we design a two-way matching boundary condition that linearly relates the displacement and velocity at atoms near the boundary, and a suitable input in terms of given incoming wave modes. Then a phonon representation for finite temperature lattice motion is adopted. The proposed approach is simple and compact. Numerical tests validate the effectiveness of the boundary condition in reflection suppression for outgoing waves. It maintains target temperature for the lattice, with expected kinetic energy distribution and heat flux. Moreover, its linear nature facilitates reliable finite temperature atomic simulations with a correct description for non-thermal motions.