• Title/Summary/Keyword: mat

Search Result 1,668, Processing Time 0.032 seconds

Fabrication of gelatin-amorphous CaP nano fibrous mat forusing as fast bone healing material

  • Sarkar, Swapan Kumar;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.40.2-40.2
    • /
    • 2009
  • Using the favorable resorption behavior of amorphous Calcium phosphate (CaP) we fabricated a gelatin basednano fibrous mat by electrospinning for using as a fast healing patch for minorbone defects. Bone is predominantly formed by an inorganic phase of nano-crystalline HAp materials and nano fibrous protein material of collagen. The osteoblast cells, which are the bone formation cells and are key to the new bone formation, receive these materials to form new bone. Taking these considerations we make a new nano fibrous mat of amorphous CaP and gelatin, which is derived from collagen itself. A polymer carrier of poly caprolactone(PCL) was used in the system to stabilize the materials in biological condition. The electrospinning conditions were optimized for smooth mat without any droplet formation. The fabricated mat was characterized for its morphologyby SEM. Mechanical properties like tensile strength was evaluated. To investigate the bio-compatibility we performed the MTT assay and investigated its resorption behavior and apatite formation behavior by SBF immersion.

  • PDF

Test Application of KOMPSAT-2 to the Detection of Microphytobenthos in Tidal Flats

  • Won Joong-Sun;Lee Yoon-Kyung;Choi Jaewon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.249-252
    • /
    • 2005
  • Microphytobenthos bloom from late January to early March in Korean tidal flats. KOMPSAT-2 will provide multi-spectral images with a spatial resolution of 4 m comparable with IKONOS. Using IKONOS and Landsat data, algal mat detection was tested in the Saemangeum area~ Micro-benthic diatoms are abundant and a major primary product in the tidal flats. A linear spectral unmixing (LSU) method was applied to the test data. LSU was effective to detect algal mat and the classified algal mat fraction well correlated with NDVI image. Fine grained upper tidal flats are generally known to be the best environment for algal mat. Algal mat thriving in coarse grained lower tidal flats as well as upper tidal flats were reported in this study. A high resolution multi-spectral sensor in KOMPSAT-2 will provide useful data for long-term monitoring of microphytobenthos in tidal flats.

  • PDF