• Title/Summary/Keyword: masterarm

Search Result 4, Processing Time 0.016 seconds

Masterarm $^+$ Development for Teleoperation of a Humanoid Robot (휴먼 로봇의 원경조종용 마스터 암$^+$ 개발에 관한 연구)

  • 김윤상;이장욱;이수용;김문상;이종원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.6
    • /
    • pp.283-294
    • /
    • 2001
  • In this paper, a masterarm for teleoperation of humanoid robot is presented. This masterarm is based human kinematics, which not only mimics human posture/motion completely, but also has wider work range. In addition, by using the distributed controller architecture and electric brake for force reflection, small size and lightweight of the device can be achieved. Some size and lightweight of the device can be achieved. Some important experiments integrated with the humanoid robot, CENTAUR developed by KIST(Korea Institute of Science and Technology), are conducted to evaluate the performance of the proposed masterarm.

  • PDF

분산 제어기 구조를 갖는 마스터 암의 기구학 설계 및 해석

  • Lee, Jangwook;Kim, Yoonsang;Lee, Sooyong;Kim, Munsang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.532-539
    • /
    • 2001
  • In robot teleoperation, much research has been carried out to control the slave robot from remote site. One of the essential devices for robot teleoperation is the masterarm, which is a path command generating device worn on human arm. In this paper, a new masterarm based on human kinematics is proposed. Its controller is based on the distributed controller architecture composed of two controller parts: a host controller and a set of satellite controllers. Each satellite controller measures the corresponding joint angle, while the host controller performs forward and inverse kinematics calculation. This distributed controller architecture can make the data updating faster, which allows to implement real-time implementation. The host controller and the satellited controllers are networked via three-wire daisy-chained SPI(Serial Peripheral Interface) protocol, so this architecture makes the electrical wiring very simple, and enhances maintenance. Analytical method for finding three additional unknown joint angles is derived using only three measured angles for each shoulder and wrist, which makes th hardware implementation very simple by minimizing the required number of satellite controllers. Finally, the simulation and experiment results are given to demonstrate the usefulness and performance of the proposed masterarm.

  • PDF

Telerobot System for Carrying FPD (FPD 운반을 위한 텔레로봇 시스템)

  • Igor, Gaponov;Jo, Hyeon-Chan;Kim, Jong-Won;Khalis, Totorkulov;Choe, Seong-Ju
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.135-138
    • /
    • 2007
  • In this paper, intelligent filtering methodology for masterarm translation signal is proposed. Fidelity and stability are contradicting factors in teleoperation. Human hand trembling filtering is one of the problems in telemanipulation field. During every operation the hand has a certain vibration that can affect the quality of teleoperation, especially in carrying FPD (Flat Panel for Display), nanomanipuation and other precise tasks. It is very important to study the kinesthetic perception of the human and to optimize the teleoperation system accordingly. To cancel out the influence of human's hand vibration the signal from the masterarm should be filtered. One of the feasible solutions is to use an intelligent filter, which is a very flexible instrument. Applying intelligent filtering methodology, we can use some heuristic methods to solve the filtering problem.

  • PDF

Design of Intelligent Filter for Telerobotic System

  • Gaponov, Igor;Cho, Byun-Chan;Choi, Seong-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.100-104
    • /
    • 2008
  • In this paper, intelligent filtering methodology for masterarm translation signal is proposed. Fidelity and stability are contradicting factors in teleoperation. Human hand trembling filtering is one of the problems in telemanipulation field. During every operation the hand has a certain vibration that can affect the quality of teleoperation, especially in carrying FPD (Flat Panel for Display), nanomanipuation and other precise tasks. It is very important to study the kinesthetic perception of the human and to optimize the teleoperation system accordingly. To cancel out the influence of human's hand vibration the signal from the masterarm should be filtered. One of the feasible solutions is to use an intelligent filter based on fuzzy logic, which is a very flexible instrument. Applying intelligent filtering methodology, we can use some heuristic methods to solve the filtering problem.