본 논문에서는 상향링크 Massive multiple-input multiple-output 시스템 상황에서의 파일럿 할당 알고리즘을 소개한다. 기존에 제안된 파일럿 할당 알고리즘은 최적 알고리즘에 비해 성능 열화가 크기 때문에, 본 논문에서는 Pre-determined Interference 기법과 Pre-determined Desired-term 기법을 이용한 알고리즘을 제안한다. 제안하는 기법은 최적 알고리즘에 비해 복잡도가 낮음과 동시에 성능 열화가 작다. 실험 결과를 통해 제안하는 기법의 성능을 확인한다.
He, Chunlong;Yin, Jiajia;He, Yejun;Huang, Min;Zhao, Bo
Journal of Communications and Networks
/
제18권4호
/
pp.649-657
/
2016
In this paper, we investigate energy efficiency (EE) of the traditional co-located and the distributed massive multiple-input multiple-output (MIMO) systems. First, we derive an approximate EE expression for both the idealistic and the realistic power consumption models. Then an optimal energy-efficient remote access unit (RAU) selection algorithm based on the distance between the mobile stations (MSs) and the RAUs are developed to maximize the EE for the downlink distributed massive MIMO systems under the realistic power consumption model. Numerical results show that the EE of the distributed massive MIMO systems is larger than the co-located massive MIMO systems under both the idealistic and realistic power consumption models, and the optimal EE can be obtained by the developed energy-efficient RAU selection algorithm.
This paper proposes a direction-of-arrival (DOA)-based beamforming approach for multi-cell massive multiple-input multiple-output systems with uniform rectangular arrays (URAs). The proposed approach utilizes the steering vectors of the URA to form a basis of the spatial space and selects the partial space for beamforming according to the DOA information. As a result, the proposed approach is of lower computational complexity than the existing methods which utilize the channel covariance matrices. Moreover, the analysis demonstrates that the proposed approach can eliminate the interference in the limit of infinite number of the URA antennas. Since the proposed approach utilizes the multipaths to enhance the signal rather than discarding them, the proposed approach is of better performance than the existing low-complexity method, which is verified by the simulation results.
In this paper, we investigate two types of in-phase and quadrature-phase (IQ) data transfer methods for cloud multiple-input multiple-output (MIMO) network operation. They are termed "after-precoding" and "before-precoding". We formulate a cloud massive MIMO operation problem that aims at selecting the best IQ data transfer method and transmission strategy (beamforming technique, the number of concurrently receiving users, the number of used antennas for transmission) to maximize the ergodic sum-rate under a limited capacity of the digital unit-radio unit link. Based on our proposed solution, the optimal numbers of users and antennas are simultaneously chosen. Numerical results confirm that the sum-rate gain is greater when adaptive "after/before-precoding" method is available than when only conventional "after-precoding" IQ-data transfer is available.
본 논문에서는 massive multiple-input multiple-output (MIMO) 기반의 wireless powered communication network (WPCN)에서 에너지 효율을 향상시키기 위한 기지국 안테나 수 최적화 기법을 제안한다. 제안하는 기법은 massive MIMO 시스템의 채널 hardening 특성을 이용하여 채널 이득을 안테나 수에 대한 식으로 근사한다. 그리고 근사화 된 최적화 문제에 편미분을 적용한 후 Lambert-W 함수를 이용하여 최적해를 closed form으로 찾는다. 모의실험을 통해 제안하는 기법의 근사 과정과 최적화 문제를 해결하는 방법이 적절함을 보이고, closed form 해가 exhaustive search 방법으로 찾은 해와 오차가 크지 않음을 확인한다.
Kudo, Riichi;Armour, Simon M.D.;McGeehan, Joe P.;Mizoguchi, Masato
Journal of Communications and Networks
/
제15권4호
/
pp.352-361
/
2013
Combining multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) with a massive number of transmit antennas (massive MIMO-OFDM) is an attractive way of increasing the spectrum efficiency or reducing the transmission energy per bit. The effectiveness of Massive MIMO-OFDM is strongly affected by the channel state information (CSI) estimation method used. The overheads of training frame transmission and CSI feedback decrease multiple access channel (MAC) efficiency and increase the CSI estimation cost at a user station (STA). This paper proposes a CSI estimation scheme that reduces the training frame length by using a novel pilot design and a novel unitary matrix feedback method. The proposed pilot design and unitary matrix feedback enable the access point (AP) to estimate the CSI of the signal space of all transmit antennas using a small number of training frames. Simulations in an IEEE 802.11n channel verify the attractive transmission performance of the proposed methods.
Separating highly correlated users can reduce the loss caused by spatial correlation (SC) in multiuser multiple-input multiple-output (MU-MIMO) systems. However, few accurate analyses of the loss caused by SC have been conducted. In this study, we define signal-to-interference-plus-noise ratio (SINR) loss to characterize it in multiuser multiple-input single-output (MU-MISO) systems, and use coefficient of correlation (CoC) to describe the SC between users. A formula is deduced to show the accurate relation between SINR loss and CoC. Based on this relation, we propose a user selection method that utilizes CoC to minimize the average SINR loss of users in massive MU-MISO systems. Simulation results verify the correctness of the relation and show that the proposed user selection method is very effective at reducing the loss caused by SC in massive MU-MISO systems.
5G 이동통신시스템에서 요구되는 높은 주파수 효율을 달성하기 위해서는 대규모 다중 입출력 송수신(Massive Multiple-Input Multiple-Output: Massive MIMO) 기술의 활용이 필수적이며, 원소 수의 증가에 따라 다양한 형태의 어레이 형상이 사용될 수 있다. 본 논문에서는 균일 원형 어레이(Uniform Circular Array: UCA)를 사용하는 다중 사용자 MIMO 전송 시 활용 가능한 빔 형성 알고리듬을 제시하며, 빔 간 상관도를 활용하여 준 직교적인 빔 인덱스 쌍을 바탕으로 사용자간 간섭을 최소화하여 얻어지는 성능 이득을 평가한다.
본 논문은 다중 사용자 (multiuser) 다중 안테나 (MIMO, multiple-input and multiple-output) 시스템을 기반으로 거대 안테나 시스템 (massive MIMO system)에 대한 성능 분석을 진행한다. 하향 링크 프레임 구조를 고려한 평균 셀 용량을 도출하고, 해당 평균 셀 용량을 기지국 안테나 수 및 사용자 수에 대하여 분석한다. 평균 셀 용량은 기지국 안테나 수 및 사용자 수에 대해 오목 함수 (concave function)이며 이러한 특징을 통해 최적의 기지국 안테나 수 및 사용자 수를 도출한다. 실험 결과를 통해 수식적으로 도출한 최적 안테나 수 및 사용자 수는 실험을 통한 최적 값과 일치함을 확인하였으며 도출한 최적 값을 통해 최대 값의 평균 셀 용량을 얻을 수 있음을 확인할 수 있다.
Frequency-division duplex (FDD) massive multiple-input multiple-output (MIMO) 시스템에서 하향 링크 채널 추정의 계산 복잡도는 기지국의 안테나 개수와 비례한다. 그러므로 이러한 시스템에서의 효율적인 채널 추정 방식이 연구 될 필요가 있다. 본 논문에서는 채널이 시간적, 공간적 상관관계를 가지는 모델에서 Kalman 필터와 least mean square (LMS) 등과 같은 적응 신호처리 기법을 이용한 채널 추정 방식을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.