• Title/Summary/Keyword: mass variation effect

Search Result 296, Processing Time 0.024 seconds

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine Generator (초소형 가스 터빈 제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 이용복;곽현덕;김창호;장건희
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.467-475
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce an excitation force due to narrow pressure distribution.

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine/Generator (초소형 가스 터빈/제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 곽현덕;이용복;김창호;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.273-281
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load-carrying capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce all excitation force due to narrow pressure distribution.

  • PDF

Experimental and numerical investigations on effect of reverse flow on transient from forced circulation to natural circulation

  • Li, Mingrui;Chen, Wenzhen;Hao, Jianli;Li, Weitong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1955-1962
    • /
    • 2020
  • In a sudden shutdown of primary pump or coolant loss accident in a marine nuclear power plant, the primary flow decreases rapidly in a transition process from forced circulation (FC) to natural circulation (NC), and the lower flow enters the steam generator (SG) causing reverse flow in the U-tube. This can significantly compromise the safety of nuclear power plants. Based on the marine natural circulation steam generator (NCSG), an experimental loop is constructed to study the characteristics of reverse flow under middle-temperature and middle-pressure conditions. The transition from FC to NC is simulated experimentally, and the characteristics of SG reverse flow are studied. On this basis, the experimental loop is numerically modeled using RELAP5/MOD3.3 code for system analysis, and the accuracy of the model is verified according to the experimental data. The influence of the flow variation rate on the reverse flow phenomenon and flow distribution is investigated. The experimental and numerical results show that in comparison with the case of adjusting the mass flow discontinuously, the number of reverse flow tubes increases significantly during the transition from FC to NC, and the reverse flow has a more severe impact on the operating characteristics of the SG. With the increase of flow variation rate, the reverse flow is less likely to occur. The mass flow in the reverse flow U-tubes increases at first and then decreases. When the system is approximately stable, the reverse flow is slightly lower than obverse flow in the same U-tube, while the flow in the obverse flow U-tube increases.

Finite Element Analysis for Evaluation of Viscous and Eccentricity Effects on Fluid Added Mass and Damping (유체 부가질량 및 감쇠 결정시 점성 및 편심 영향에 대한 유한요소해석)

  • 구경회;이재한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • In general, simple fluid added mass method is used for the seismic and vibration analysis of the immersed structure to consider the fluid-structure interaction effect. Actually, the structural response of the immersed structure can be affected by both the fluid added mass and damping caused by the fluid viscosity. These variables appeared as a consistent matrix form with the coupling terms. In this paper, finite element formula for the inviscid fluid case and viscous fluid case are derived from the linearized Navier Stoke's equations. Using the finite element program developed in this paper, the analyses of fluid added mass and damping for the hexagon core structure of the liquid metal reactor are carried out to investigate the effect of fluid viscosity with variation of the fluid gap and Reynolds number. From the analysis results, it is verified that the viscosity significantly affects the fluid added mass and damping as the fluid gap size decrease. From the analysis results of eccentricity effect on the fluid added mass and damping of the concentric cylinders, the fluid added mass increase as the eccentricity increases, however the fluid damping increases only when the eccentricity is very severe.

The first photometric analysis of the close binary system NSVS 1461538

  • Kim, Hyoun-Woo;Kim, Chun-Hwey
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2016
  • The follow-up BVRI photometric observations of NSVS 1461538, which was discovered as an $Algol/{\beta}$ Lyr eclipsing variable by Hoffman, Harrison & McNamara (2009), were performed for three years from 2011 to 2013 by using the 61-cm telescope and CCD cameras of Sobaeksan Optical Astronomy Observatory (SOAO). New light curves have deep depths both of the primary and secondary eclipses, rounded shapes outside eclipses and a strong O'Connell effect, indicating that NSVS 1461538 is a typical W UMa close binary system rather than an $Algol/{\beta}$ Lyr type binary star. A period study with all the timings shows that the orbital period may vary in a sinusoidal way with a period of about 5.6 yr and a small semi-amplitude of about 0.008 d. The cyclical period variation was interpreted as a light-time effect due to a tertiary body with a minimum mass of $0.66M{\odot}$. The first photometric solution with the Wilson-Devinney binary model shows that the system is a W-subtype contact binary with the mass ratio ($q=m_c/m_h$) of 3.46, orbit inclination of 85.6 deg and fill-out factor of 30%. From the existing empirical relationship between parameters, the absolute dimension was estimated. The masses and radii of the component stars are $0.28M{\odot}$ and $0.71R{\odot}$ for the less massive but hotter primary star, respectively, and $0.96M{\odot}$ and $1.21R{\odot}$ for the more massive secondary, respectively. Possible evolution of the system is discussed in the mass-radius and the mass-luminosity planes.

  • PDF

Modeling of a rockburst related to anomalously low friction effects in great depth

  • Zhan, J.W.;Jin, G.X.;Xu, C.S.;Yang, H.Q.;Liu, J.F.;Zhang, X.D.
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.113-131
    • /
    • 2022
  • A rockburst is a common disaster in deep-tunnel excavation engineering, especially for high-geostress areas. An anomalously low friction effect is one of the most important inducements of rockbursts. To elucidate the correlation between an anomalously low friction effect and a rockburst, we establish a two-dimensional prediction model that considers the discontinuous structure of a rock mass. The degree of freedom of the rotation angle is introduced, thus the motion equations of the blocks under the influence of a transient disturbing force are acquired according to the interactions of the blocks. Based on the two-dimensional discontinuous block model of deep rock mass, a rockburst prediction model is established, and the initiation process of ultra-low friction rockburst is analyzed. In addition, the intensity of a rockburst, including the location, depth, area, and velocity of ejection fragments, can be determined quantitatively using the proposed prediction model. Then, through a specific example, the effects of geomechanical parameters such as the different principal stress ratios, the material properties, a dip of principal stress on the occurrence form and range of rockburst are analyzed. The results indicate that under dynamic disturbance, stress variation on the structural surface in a deep rock mass may directly give rise to a rockburst. The formation of rockburst is characterized by three stages: the appearance of cracks that result from the tension or compression failure of the deformation block, the transformation of strain energy of rock blocks to kinetic energy, and the ejection of some of the free blocks from the surrounding rock mass. Finally, the two-dimensional rockburst prediction model is applied to the construction drainage tunnel project of Jinping II hydropower station. Through the comparison with the field measured rockburst data and UDEC simulation results, it shows that the model in this paper is in good agreement with the actual working conditions, which verifies the accuracy of the model in this paper.

Analysis of Thermal Effect on Tension of a Moving Web in Roll-to-Roll Printed Electronics (롤투롤 인쇄 전자 시스템에서 유연기판의 열변형을 고려한 웹의 장력거동 분석)

  • Lee, Jong-Su;Lee, Chang-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.9-15
    • /
    • 2013
  • Roll-to-roll printing technology has lately become a subject of special interests in the field of printed electronics. Since this technology has the advantage that continuous and mass production is possible. And for high precision register control is required in multi-layer printing to produce the electronic devices, this is one of the most important technologies in roll-to-roll printing technology. Register error could be generated by various reasons like eccentricity of roll and thermal deformation due to temperature variation in drying section. In this study, the effect of tension variation on the register was analyzed. The results of these analyses show that it is essential to consider the tension disturbance which is generated by the change of temperature in drying section, and conventional register model has limitation to estimate the register error. In order to overcome the limitation of the register model, advanced register model based on the SI process was developed. Also, the performance of the developed model was verified experimentally.

An Experimental Study on Thermal Properties of Clathrate for Cold Storage Applications (저온축열용 포접화합물의 열물성에 관한 실험적 연구)

  • 한영옥;정낙규;김진흥
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.725-734
    • /
    • 2000
  • The objective of this paper is to investigate the thermal properties of TMA clathrate applicable to cold storage system for building air-conditioning. Especially, the test tube experiments are peformed by comparing and analyzing the temperature of phase change, specific heat and subcooling characteristic according to the variation of concentrations and temperature of heat source in TMA clathrate. The results are summarized as follows; 1) temperature of phase change is dropped as the temperature of heat source is lower, 2) the effect of subcooling suppression with about $9.3^{\circ}C$ is confirmed when the temperature of heat source is $-10^{\circ}C$ in case of 30wt%, while the temperature of subcooling is about $0^{\circ}C$ when the temperature of heat source is $-15^{\circ}C$ in case of 25, 29wt% and 30wt% . Thus, the effect of subcooling suppression is greater as the temperature of heat source is lower. Additionally, the concentrative study is needed on mass concentration causing the phase change without subcooling phenomenon when the temperature of heat source is $-15^{\circ}C$ Thus, it is concluded that TMA clathrate has proper properties as the cold storage medium for building air-conditioning.

  • PDF

Effect of inlet configuration on the growth rate of GaN layer in a MOCVD reactor (MOCVD 반응로내 GaN 성장에 미치는 입구형상의 영향)

  • Yun, Sung-Kyu;Baek, Byung-Joon;Pak, Bock-Choon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.67-72
    • /
    • 2003
  • Numerical calculation has been performed to investigate the effect of inlet configuration on the growth rate of GaN layer on the heated susceptor. The conventional single inlet, where the gas is mixed by force in the inlet, is compared with separated flow inlet. Two-parallel gas flow $H_{2}$ and $NH_{3}$ are separated by a plate with finite length which are also parallel to the susceptor. The effect of separated plate length, carrier gas and flow rate of each precursor on the mixing of reactant gases and growth rate were investigated. Furthermore the three dimensional model is employed to predict the transverse variation of growth rate.

  • PDF

Fundamental Studies on the Thermal conductivity and Thermal Diffusivity of Rough rice (벼의 열전도계수와 열확산계수에 관한 기초연구)

  • 김만수;고학균
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.53-63
    • /
    • 1979
  • The knowlege of thermal properties of rough rice has become of greate importance to the analysis of heat and mass transfer phenomenon in rice drying and storage process. Some information is available on the thermal properties of rough rice in foreign countries but is not available for these properties in Korea. A fundamental study was made to determine the thermal conductivity and thermal diffusivity of rough rice with line source method and to select current and resistance suitable for these properties from investigating the effect of current and resistance of heating wire on the temperature rise. The result of this study may be summarized as follows ; 1. Even through the power per unit length of heating wires is about the same, the tendency of temperature rise showed a little difference among them , and the suitable range of it for thermal properties was found to be 3.56-5.37w/m. 2. the most desirable resistance and current of heating wire was 18.40 ohm/m, 0.44 amperes among three kinds of heating wires and currents, respectively. because it took 13 minutes or so for the heating wire to reach equilibrium temperature. 3. The thermal conductivity of rough rice was 0.120-0.130 w/m$ ^\circ C$. and thermal diffusivity of it was $5.8210 $\times10^{-8} -9.7529 $\times10^{-8} m^2 /s.$ 4.The thermal conductivity showed a little difference in variation with resistance of heating wire but the variation of current of heating wire at the same resistance did not affect the thermal conductivity , and the thermal diffusivity was not affected by the variation of resistance and current.

  • PDF