• Title/Summary/Keyword: mass variation effect

Search Result 296, Processing Time 0.024 seconds

Assessment of effect of material properties on seismic response of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.601-619
    • /
    • 2017
  • Cantilever retaining wall movements generally depend on the intensity and duration of ground motion, the response of the soil underlying the wall, the response of the backfill, the structural rigidity, and soil-structure interaction (SSI). This paper investigates the effect of material properties on seismic response of backfill-cantilever retaining wall-soil/foundation interaction system considering SSI. The material properties varied include the modulus of elasticity, Poisson's ratio, and mass density of the wall material. A series of nonlinear time history analyses with variation of material properties of the cantilever retaining wall are carried out by using the suggested finite element model (FEM). The backfill and foundation soil are modelled as an elastoplastic medium obeying the Drucker-Prager yield criterion, and the backfill-wall interface behavior is taken into consideration by using interface elements between the wall and soil to allow for de-bonding. The viscous boundary model is used in three dimensions to consider radiational effect of the seismic waves through the soil medium. In the seismic analyses, North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarimca station is used. Dynamic equations of motions are solved by using Newmark's direct step-by-step integration method. The response quantities incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that while the modulus of elasticity has a considerable effect on seismic behavior of cantilever retaining wall, the Poisson's ratio and mass density of the wall material have negligible effects on seismic response.

Competition between ICME and crustal magnetic field on the loss of Mars atmosphere

  • Hwang, Junga;Jo, Gyeongbok;Kim, Roksoon;Jang, Soojeong;Cho, Kyungsuk;Lee, Jaejin;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.62.3-63
    • /
    • 2017
  • The Mars Atmosphere and Volatile (MAVEN) mission has been providing valuable information on the atmospheric loss of Mars since its launch in November 2013. The Neutral Gass and Ion Mass Spectrometer (NGIMS) onboard MAVEN, was developed to analyze the composition of the Martian upper atmospheric neutrals and ions depending on various space weather conditions. We investigate a variation of upper atmospheric ion densities depending on the interplanetary coronal mass ejections (ICMEs). It is known that the Mars has a very weak global magnetic field, so upper atmosphere of Mars has been strongly affected by the solar activities. Meanwhile, a strong crustal magnetic field exists on local surfaces, so they also have a compensating effect on the upper atmospheric loss outside the Mars. The weak crustal field has an influence up to 200km altitude, but on a strong field region, especially east longitude of $180^{\circ}$ and latitude of $-50^{\circ}$, they have an influence over 1,400km altitude. In this paper, we investigated which is more dominant between the crustal field effect and the ICME effect to the atmospheric loss. At 400km altitude, the ion density over the strong crustal field region did not show a significant variation despite of ICME event. However, over the other areas, the variation associated with ICME event is far more overwhelming.

  • PDF

The factors influencing consumers' perceived complexity of online apparel mass customization service usage

  • Moon, Heekang;Lee, Hyun-Hwa;Chang, Eunyoung
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.2
    • /
    • pp.272-286
    • /
    • 2013
  • Mass customization is a marketing strategy to meet consumer needs for variation and uniqueness of products. Although there are quite a few studies quantitatively investigated the options provided by mass customization process, scholarly work related to mass customization has provided mixed results on consumer perception of complexity and their responses. The purpose of the study is to derive the factors that influence consumer complexity perception in online apparel mass customization process and consumers' needs to enhance mass customization services. Data were collected by conducting focus group interviews of which 29 participations in 4 groups. The results of the study suggested that consumers perceived complexity through mass customization process due to too many choice options. However, the effect of number of options on respondents' complexity perception was different depending on consumer characteristics such as consumer expertise and fashion involvement, and the characteristics of consumer preference development. Shopping context such as shopping purpose is another moderating factor. This study also suggests that a variety of marketing strategies which can enhance mass customization services affect the relationship between the number of options and consumers' complexity perception. The findings of the study provide academic and managerial implications.

A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation - (공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향-)

  • 방창훈;추홍록;유갑종
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

Experimental Investigation for the Characteristics of Energy Separation of a Vortex Tube at Various Inlet and outlet Pressure Conditions (입.출구의 압력조건에 따른 보텍스 튜브의 에너지분리 특성에 관한 실험적 고찰)

  • 유갑종;김정수;최인수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1149-1155
    • /
    • 2001
  • The experimental investigation on energy separation in a vortex tube has been carried out to sow the effect of inlet and outlet pressures with various working fluids(air,$O_2,\;and\; CO_2$). Those outlet pressure means cold outlet and hot outlet pressure which were set equally. The results showed that the total enthalpy variation became a maximum when the mass flow rate at the cold outlet was a half of the total mass flow rate in the vortex tube (y=0.5). The total enthalpy variation was quite affected by the pressure difference between the inlet and outlet of vortex tube when the ratio of the inlet pressure to the cold outlet pressure remained constant. Although specific enthalpy differences between the inlet and the outlet (both cold and hot outlet) did not noticeably vary with the pressure difference, the specific enthalpy difference between the inlet and cold outlet was dominantly affected by physical properties of working gases.

  • PDF

Heat (mass) transfer measurement and analysis with flows around film cooling holes and circular cylinders (막냉각홀 주위와 원형돌출봉 주위에서의 열(물질)전달의 측정과 해석)

  • Kim, B.G.;Wu, S. J.;Cho,H. H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1485-1495
    • /
    • 1997
  • The present study investigates heat/mass transfer around film cooling jets and circular cylinders to compare the characteristics of each other. Experiments are conducted to obtain the detailed heat/mass transfer coefficients of flat plate with injections through an array of holes and for flows around an array of protruding circular cylinders using the naphthalene sublimation technique. The inclination angles of cylinders are set to the same ones of jets; a, the angle between the jet and the surface is fixed at 30 deg. through the whole experiments and .betha., the angle between the projection of the jet on the surface and the direction of main stream is adjusted to 0 deg., 45 deg. and 90 deg. to investigate the effect of variation of injection angles. The influence of blowing rates of jets and those of cylinder length to diameter ratios are also investigated. The results indicate that the increase of angle .betha. influences the spanwise uniformity of heat/mass transfer remarkably for both jets and cylinders, but that variation of cylinder length to diameter ratios has weaker effects on heat/mass transfer coefficients than that of blowing rates.

Detailed Heat Transfer Characteristics on Rotating Turbine Blade (회전하는 터빈 블레이드에서의 열전달 특성)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1074-1083
    • /
    • 2006
  • In the present study, the effect of blade rotation on blade heat transfer is investigated by comparing with the heat transfer results for the stationary blade. The experiments are conducted in a low speed annular cascade with a single stage turbine and the turbine stage is composed of sixteen guide vanes and blades. The chord length and the height of the tested blade are 150 mm and about 125 mm, respectively. The blade has a flat tip and the mean tip clearance is 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. For the experiments, the inlet Reynolds number is $Re_c=1.5{\times}10^5$, which results in the blade rotation speed of 255.8 rpm. Blade rotation induces a relative motion between the blade and the shroud as well as a periodic variation of incoming flow. Therefore, different heat/mass transfer patterns are observed on the rotating blade, especially near the tip and on the tip. The relative motion reduces the tip leakage flow through the tip gap, which results in the reduction of the tip heat transfer. However, the effect of the tip leakage flow on the blade surface is increased because the tip leakage vortex is formed closer to the surface than the stationary case. The overall heat/mass transfer on the shroud is not affected much by the blade rotation.

Strength degradation of a natural thin-bedded rock mass subjected to water immersion and its impact on tunnel stability

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Wu, Yongjin;He, Jun
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Strength anisotropy is a typical feature of thin-bedded rock masses and their strength will be degraded subjected to water immersion effect. Such effect is crucial for the operation of hydropower plant because the impoundment lifts the water level of upstream reservoir and causes the rock mass of nearby slopes saturated. So far, researches regarding mechanical property of natural thin-bedded rock masses and their strength variation under water immersion based on field test method are rarely reported. This paper focuses on a thin-bedded stratified rock mass and carries out field test to investigate the mechanical property and strength variation characteristics. The field test is highlighted by samples which have a large shear dimension of 0.5 m*0.5 m, representing a more realistic in-situ situation than small size specimen. The test results confirm the anisotropic nature of the concerned rock mass, whose shear strength of host rocks is significantly larger than that of bedding planes. Further, the comparison of shear strength parameters of the thin-bedded rock mass under natural and saturated conditions show that for both host rocks and bedding planes, the decreasing extent of cohesion values are larger than friction values. The quantitative results are then adopted to analyze the influence of reservoir impoundment of a hydropower plant on the surrounding rock mass stability of diversion tunnels which are located in the nearby slope bank. It is evaluated that after reservoir impoundment, the strength degradation induced incremental deformations of surrounding rock mass of diversion tunnels are small and the stresses in lining structure are acceptable. It is therefore concluded that the influences of impoundment are small and the stability of diversion tunnels can be still achieved. The finings regarding field test method and its results, as well as the numerical evaluation conclusions are hoped to provide references for rock projects with similar concerns.

Simulation and Experimental Study on an Air-Cooled $NH_3/H_2O$ Absorption Chiller (공랭형 $NH_3/H_2O$ 흡수식 냉동기의 모사 및 실험적 연구)

  • Oh Min Kyu;Kim Hyun Jun;Kim Sung Soo;Kang Yong Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1028-1034
    • /
    • 2005
  • The objective of this paper is to study the effects of the cooling air mass flow rate and the heat input variation by the simulation and the experiment. An air-cooled $NH_3/H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect machine is 17.6 kW (5.0 USRT). The overall conductance (UA) of each component, the cooling capacity, coefficient of performance and each state point are measured with the variation of the cooling air mass flow rate and the heat input. It is found that the COP and cooling capacity increase and then decreases with increasing the heat input. It is also found that the COP and the cooling capacity increase and keep constant with increasing the cooling air mass flow rate. The maximum COP is estimated as 0.51 and the optimum cooling air mass flow rate is $217\;m^3/min$ from the present experiment.

Experimental Study on Simplex Swirl Injector Dynamics with Varying Geometry

  • Chung, Yun-Jae;Khil, Tae-Ock;Yoon, Jung-Soo;Yoon, Young-Bin;Bazarov, V.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • The effects of swirl chamber's diameter and length on injector's dynamic characteristics were investigated through an experimental study. A mechanical pulsator was installed in front of the manifold of a swirl injector which produces pressure oscillations in the feed line. Pressure in the manifold, liquid film thickness in the orifice and the pressure in the orifice were measured in order to understand the dynamic characteristic of the simplex swirl injector with varying geometry. A direct pressure measuring method (DPMM) was used to calculate the axial velocity of the propellant in the orifice and the mass flow rate through the orifice. These measured and calculated values were analyzed to observe the amplitude and phase differences between the input value in the manifold and the output values in the orifice. As a result, a phase-amplitude diagram was obtained which exhibits the injector's response to certain pressure fluctuation inputs. The mass flow rate was calculated by the DPMM and measured directly through the actual injection. The effect of mean manifold pressure change was insignificant with the frequency range of manifold pressure oscillation used in this experiment. Mass flow rate was measured with the variation of injector's geometries and amplitude of the mass flow rate was observed with geometry and pulsation frequency variation. It was confirmed that the swirl chamber diameter and length affect an injector's dynamic characteristics. Furthermore, the direction of geometry change for achieving dynamic stability in the injector was suggested.