• Title/Summary/Keyword: mass transfer model

Search Result 643, Processing Time 0.034 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012 (설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwataik;Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Choi, Jong Min;Park, Jun-Seok;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

Intelligent 3D packing using a grouping algorithm for automotive container engineering

  • Joung, Youn-Kyoung;Noh, Sang Do
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.140-151
    • /
    • 2014
  • Storing, and the loading and unloading of materials at production sites in the manufacturing sector for mass production is a critical problem that affects various aspects: the layout of the factory, line-side space, logistics, workers' work paths and ease of work, automatic procurement of components, and transfer and supply. Traditionally, the nesting problem has been an issue to improve the efficiency of raw materials; further, research into mainly 2D optimization has progressed. Also, recently, research into the expanded usage of 3D models to implement packing optimization has been actively carried out. Nevertheless, packing algorithms using 3D models are not widely used in practice, due to the large decrease in efficiency, owing to the complexity and excessive computational time. In this paper, the problem of efficiently loading and unloading freeform 3D objects into a given container has been solved, by considering the 3D form, ease of loading and unloading, and packing density. For this reason, a Group Packing Approach for workers has been developed, by using analyzed truck packing work patterns and Group Technology, which is to enhance the efficiency of storage in the manufacturing sector. Also, an algorithm for 3D packing has been developed, and implemented in a commercial 3D CAD modeling system. The 3D packing method consists of a grouping algorithm, a sequencing algorithm, an orientating algorithm, and a loading algorithm. These algorithms concern the respective aspects: the packing order, orientation decisions of parts, collision checking among parts and processing, position decisions of parts, efficiency verification, and loading and unloading simulation. Storage optimization and examination of the ease of loading and unloading are possible, and various kinds of engineering analysis, such as work performance analysis, are facilitated through the intelligent 3D packing method developed in this paper, by using the results of the 3D model.

Layer Growth Rate of Benzene Layer from Benzene-Cyclohexane Mixtures in Layer Crystallizer (경막 결정화기에서 벤젠-시클로헥산 혼합물로부터 벤젠의 결정성장속도)

  • Kim, Kwang-Joo;Lee, Jung-Min;Ryu, Seung-Kon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.308-314
    • /
    • 1996
  • The crystal growth rate of benzene from benzene-cyclohexane mixtures at a cylindrical layer crystallizer was determined from the slope of the line of correlation between operating time and layer thickness. The thickness of crystal layer was obtained from the amount of crystal deposited on the cooled wall surface of the crystallizer. The crystal growth rate was related with the degree of subcooling, which was defined as the difference between temperature of melt and that of growing crystal surface. The linear crystal growth rate for binary mixtures was proportional to the second power of the degree of subcooling. Equation model which was obtained from data through the rate of heat and mass transfer in the crystallizer and thus can tell crystal thickness and surface temperature of crystal layer according to the elapsed time was presented and successfully correlated to the experimental data. For the benzene-cyclohexane mixtures contains 5wt% and 10wt% of cyclohexane, the comparison of experimental data with calculation using model equation was done for crystal thickness corresponding to the various cooling temperatures.

  • PDF

The Improvement on Proposal Evaluation System of National Defense Core Technology R&D Projects (국방핵심기술 연구개발과제의 선정평가 개선 연구)

  • Kim, Chan-Soo;Cho, Kyu-Kab
    • Journal of Technology Innovation
    • /
    • v.15 no.2
    • /
    • pp.123-152
    • /
    • 2007
  • The striking characteristic of the contemporary global security environment is that the nature of threats has become diverse and complex. For example, transnational and non-military threats including terrorism and proliferation of weapon of mass destruction has increased. In this security environment, Advanced countries funnel their investments for defense budgets into the assurance of key force capability and R&D of cutting-edge core technologies, in consideration of future battlefield environments so as to get an edge on not only defense science and technology but also intelligence capabilities. As shown by past practices of the korea's defense acquisition, the ministry of national defense has tried to enhance its force capabilities in the short-term by purchasing foreign weapon systems rather than by investing in domestic R&D. Accordingly, the technological gaps between the korea and advanced countries were widened due to both insufficient investment in development of domestic technologies and avoidance of technological transfer by advanced countries. Thus, for the effective execution of the R&D budget and the successful performance of the projects, the importance of selection, management and evaluation of the R&D projects is emphasized. So, The objective of this study is that the analysis of the proposal-selection evaluation system for the realization of the successful defense core technology R&D projects. This study focused on the improvement of the proposal-selection evaluation model which can be applicable to the national defense core R&D projects. Using the improved proposal-selection evaluation system, we propose a model to enhance the reliability of the national defense core technology R&D project evaluation system.

  • PDF

A Study of Smoke Movement in a Short Tunnel (짧은 터널 내의 연기거동에 관한 연구)

  • Kim, Sung-Chan;Ryou, Hong-Sun;Kim, Chung-Ik;Hong, Ki-Bae
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.31-36
    • /
    • 2002
  • This paper concerns smoke propagation in tunnel fires with various size of fire source. Experiments carried out in model tunnel and those results were compared with numerical results. The Froude scaling law was used to scale model tests for comparison with larger scale tests. In order to validate for numerical analysis, temperature distribution of predicted data was compared with measured data. Examining the temperature distribution, we found that smoke layer does not come down under 50% of tunnel heights for a short tunnel heights for a short tunnel firs without ventilation. Front velocity of smoke layer is proportional to the cube root of heat release rate. And it is in good agreement with existing empirical expression and numerical prediction. In a short tunnel fire, horizontal propagation of smoke layer is more important than vertical smoke movement for evacuation plan.

Study of fission gas products effect on thermal hydraulics of the WWER1000 with enhanced subchannel method

  • Bahonar, Majid;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.91-105
    • /
    • 2017
  • Thermal hydraulic (TH) analysis of nuclear power reactors is utmost important. In this way, the numerical codes that preparing TH data in reactor core are essential. In this paper, a subchannel analysis of a Russian pressurized water reactor (WWER1000) core with enhanced numerical code is carried out. For this, in fluid domain, the mass, axial and lateral momentum and energy conservation equations for desired control volume are solved, numerically. In the solid domain, the cylindrical heat transfer equation for calculation of radial temperature profile in fuel, gap and clad with finite difference and finite element solvers are considered. The dependence of material properties to fuel burnup with Calza-Bini fuel-gap model is implemented. This model is coupled with Isotope Generation and Depletion Code (ORIGEN2.1). The possibility of central hole consideration in fuel pellet is another advantage of this work. In addition, subchannel to subchannel and subchannel to rod connection data in hexagonal fuel assembly geometry could be prepared, automatically. For a demonstration of code capability, the steady state TH analysis of a the WWER1000 core is compromised with Thermal-hydraulic analysis code (COBRA-EN). By thermal hydraulic parameters averaging Fuel Assembly-to-Fuel Assembly method, the one sixth (symmetry) of the Boushehr Nuclear Power Plant (BNPP) core with regular subchannels are modeled. Comparison between the results of the work and COBRA-EN demonstrates some advantages of the presented code. Using the code the thermal modeling of the fuel rods with considering the fission gas generation would be possible. In addition, this code is compatible with neutronic codes for coupling. This method is faster and more accurate for symmetrical simulation of the core with acceptable results.

Prediction Model for the Extraction Weights and Extraction Rate of Barley and Cassia Tora Seed Tea by Different Extraction Conditions (보리차 및 결명자(決明子)차의 추출조건(抽出條件)의 변화(變化)에 따른 추출량(抽出量) 및 추출속도(抽出速度) 예측(豫測)모델)

  • Jeong, Mun Ho;Choi, Yong Hee
    • Current Research on Agriculture and Life Sciences
    • /
    • v.8
    • /
    • pp.95-106
    • /
    • 1990
  • The most important factors among extraction conditions in the extraction process of Barley and Casia tora seed are particle size, extraction temperature, time and initial concentration. In this research project, then, the amounts of extracted materials were measured at various conditions of above factors. They were increased as the particle sizes were decreased and were also increased in the proportional to the value of square of temperature. General mathematical prediction models were developed by an optimization technique for the amounts of extracted materials and extraction rate on the basis of each independent factor. Then, the final prediction model was obtained upon all the factors. As the results, it was also found that the values of overall mass transfer coefficients were increased as the particle sizes were decreased.

  • PDF

Evaporation Theory for Reclaimed Clay (준설 점토 지반에서의 증발 이론 개발)

  • 이형주;이인모;이영남;성상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.55-64
    • /
    • 2003
  • Desiccation of a soil is basically the removal of water by evaporation, which is controlled by evaporativity and evaporability. Surface evaporation improves the trafficability which is essential for the access of construction equipment in the area reclaimed with soft clay. The existing traditional methods for evaluating evaporation can not account for the deformation of reclaimed soft soils during evaporation. Therefore, a theoretical model for predicting the rate of evaporation from the surface of a deformable material is proposed. The model is based on a system of equations for coupled heat and mass transfer in unsaturated soils. The modified pressure plate extractor test and glass desiccator test were carried out to obtain the soil-water characteristic curve for a deformable soil. The column drying test was conducted to investigate one dimensional water flow, heat flow and evaporation in the surface. A finite difference program was developed to solve the coupled nonlinear partial differential equations, which permit the study of water, vapor and heat flows in the deformable soil. Comparison between measured and simulated values shows a reasonably good matching between the two.

Moment Analysis (MA) of Lysozyme in Cation Exchange High Performance Liquid Chromatography (HPLC) (양이온교환 고성능액체크로마토그래피에서 라이소자임의 모멘트 분석)

  • Ko, Kwan Young;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.487-493
    • /
    • 2016
  • The moment analysis of lysozyme was implemented using chromatograms that were obtained from weak cation exchange column in high performance liquid chromatography system. Three elution sodium phosphate buffers containing 1.0, 0.75, 0.5M sodium chloride were used. Experiments were conducted by varying flow rate, elution sodium chloride concentration, and lysozyme solute concentration. The general rate (GR) model was employed to calculate the first moment and the second moment. By plotting $L/u_0$ vs. $({\mu}_1-t_0)/(1-{\varepsilon}_e)(1-{\varepsilon}_i)$] equilibrium constants (K) were obtained from first moment analysis. Intra-particle diffusivity was obtained from theoretical plate number data. Based on the results of moment analysis, van Deemter plots were drawn in order to investigate the contributions of $H_{ax}$, $H_f$, and $H_d$ to total Height Equivalent to a Theoretical Plate (HETP, $H_{total}$). The effect of intra-particle diffusion ($H_d$) was the most dominant factor contributing to HETP while external mass transfer ($H_f$) was negligible factor.

Simulation study of DAF flotation basin using CFD (전산유체해석기법을 이용한 용존공기부상공정의 유동해석)

  • Park, Byungsung;Woo, Sungwoo;Park, Sungwon;Min, Jinhee;Lee, Woonyoung;You, Sunam;Jun, Gabjin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.261-272
    • /
    • 2013
  • Algae boom (Red tide) in south coastal area of Korea has been appeared several times during a decade. If algae boom appears in the desalination plant, media filter and UF filter are clogged quickly, and the plant should be shutdown. In general, Algae can be removed from water by flotation better than by sedimentation, because of the low density of algal cell. The purpose of this study conducts the CFD simulation of DAF flotation basin to apply the design of the dissolved air flotation with ball filter in the Test Bed for SWRO desalination plant. In this study, Eulerian-Eulerian multiphase model was applied to simulate the behavior of air bubbles and seawater. Density difference model and gravity were used. But de-sludge process and mass transfer between air bubbles and seawater were ignored. Main parameter is hydraulic loading rate which is varied from 20 m/hr to 27.5 m/hr. Geometry of flotation basin were changed to improve the DAF performance. According to the result of this study, the increase of hydraulic loading rate causes that the flow in the separation basin is widely affected and the concentration of air is increased. The flow pattern in the contact zone of flotation basin is greatly affected by the location of nozzle header. When the nozzle header was installed not the bottom of the contact zone but the above, the opportunity of contact between influent and recycle flow was increased.