• Title/Summary/Keyword: mass ratio

Search Result 3,990, Processing Time 0.03 seconds

Experimental study of strength characteristics of reinforced broken rock mass

  • Yanxu Guo;Qingsong Zhang;Hongbo Wang;Rentai Liu;Xin Chen;Wenxin Li;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.553-565
    • /
    • 2023
  • As the structure of broken rock mass is complex, with obvious discontinuity and anisotropy, it is generally necessary to reinforce broken rock mass using grouting in underground construction. The purpose of this study is to experimentally investigate the mechanical properties of broken rock mass after grouting reinforcement with consideration of the characteristics of broken rock mass (i.e., degree of fragmentation and shape) and a range of reinforcement methods such as relative strength ratio between the broken rock mass and cement-based grout stone body (λ), and volumetric block proportion (VBP) representing the volumetric ratio of broken rock mass and the overall cement grout-broken rock mass mixture after the reinforcement. The experimental results show that the strength and deformation of the reinforced broken rock mass is largely determined by relative strength ratio (λ) and VBP. In addition, the enhancement in compressive strength by grouting is more obvious for broken rock mass with spherical shape under a relatively high strength ratio (e.g., λ=2.0), whereas the shape of rock mass has little influence when the strength ratio is low (e.g., λ=0.1). Importantly, the results indicate that columnar splitting failure and inclined shear failure are two typical failure modes of broken rock mass with grouting reinforcement.

A Study on the Heat Recovery Performance of Water Fludized-Bed Heat Exchanger (물유동층 열교환기의 열회수성능 연구)

  • 김한덕;박상일;이세균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.690-696
    • /
    • 2003
  • This paper presents the heat recovery performance of water fluidized-bed heat exchanger. Temperature and humidity ratio of waste gas are considered as important parameters in this study. Therefore, the heat recovery rate through water fluidized-bed heat exchanger for exhaust gases with various temperatures and humidity ratios can be estimated from the results of this study. Mass flow ratio (the ratio of mass flow rate of water to that of gas) and temperature of inlet water are also considered as important operating variables. Increase of heat recovery rate can be obtained through either high mass flow ratio or low temperature of inlet water with resultant low recovered temperature. The heat recovery performance with the mass flow ratio of about up to 10 has been investigated. The effect of number of stages of water fluidized-bed on the heat recovery performance has been also examined in this study.

GENERAL PROPERTIES OF CONTACT BINARY SYSTEM FOR MASS RATIO DISTRIBUTION (접촉식쌍성의 질량비 분포에 따른 일반적 특성)

  • 오규동
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 1999
  • With a total 761 contact binary systems in Svechnikov & Kuznetsova(1990)'s catalogue, their physical properties by the mass ratio are investigated - for the early CE type with a common radiative envelope and the late CW type with a common convective envelope. It is found that the early CE type shows a higher temperature difference($\mid$$DeltaT$$\mid$) between the primary and secondary components, and also longer period, than the late CW type. The mass ratio of the CW type are distributed in period, than the late CW type. The mass ratio of the CW type are distributed in smaller ranges, from 0.3 to 0.7, than the CE type. Further, the relation between mass ratio and luminosity for the CW type shows a well-defined linear relation, such as ratio and luminosity for the CW type shows a well-defined linear relation, such as $L_2/L_1$ = 0.01 = 0.89q. In the mass ratio-radii relation, it is confirmed that the physical difference of the CE and CW types is a result of the secondary radius. A new mass ratio-radii relation for the CW type is suggested for both the total radius $({gamma}_1/{gamma}_2$ and the radius ratio $({gamma}_2/{gamma}_1$, respectively.

  • PDF

Vortex-induced vibration characteristics of a low-mass-ratio flexible cylinder

  • Quen, Lee Kee;Abu, Aminudin;Kato, Naomi;Muhamad, Pauziah;Siang, Kang Hooi;Hee, Lim Meng;Rahman, Mohd Asamudin A
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.621-631
    • /
    • 2020
  • A laboratory experiment is conducted is to investigate the behaviour of a low-mass-ratio and high aspect ratio flexible cylinder under vortex-induced vibration (VIV). A flexible cylinder with aspect ratio of 100 and mass ratio of 1.17 is towed horizontally to generate uniform flow profile. The range of Reynolds number is from 1380 to 13800. Vibration amplitude, in-line and cross-flow frequency response, amplitude trajectory, mean tension variation and hydrodynamic force coefficients are analyzed based on the measurement from strain gauges, load cell and CCD camera. Experimental results indicate that broad-banded lock-in region is found for the cylinder with a small Strouhal number. The frequency switches in the present study indicates the change of the VIV phenomenon. The hydrodynamic force responses provide more understanding on the VIV of a low mass ratio cylinder.

Mechanical Vibration Characteristics Analysis of a Counterblow Hammer Press in the Forging Process (카운터블로 해머 프레스 단조공정의 기계진동 특성 해석)

  • Kim, Soo Tae;Ju, Gyeong Jin;Park, Geon Jong;Choi, Young Hyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.43-52
    • /
    • 2022
  • The vibration characteristics of a hammer press are important parameters for machine design and production control. In this study, a counterblow hammer press was mathematically modelled as a mass-spring-damper system in order to analyze its vibration characteristics. The forging efficiency was theoretically derived as a function of the mass ratio, momentum ratio, and the coefficient of restitution And the effects of the mass ratio, momentum ratio and the restitution coefficient on the forging efficiency were also investigated for two particular cases of the unit mass ratio and unit momentum ratio. Additionally, the vibration responses of the counterblow hammer press due to the ram colliding impact were analyzed, and the force transmitted to the foundation through the mounting unit was determined.

Detailed Measurement of Heat/Mass Transfer in a Rotating Two-Pass Duct (II) - Effects of Duct Aspect Ratio - (이차 냉각 유로를 가진 회전덕트에서 열/물질전달 특성 (II) - 덕트 종횡비에 따른 영향 -)

  • Kim Kyung Min;Kim Yun Young;Rhee Dong Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.921-928
    • /
    • 2004
  • Measurements of local heat/mass transfer coefficients in rotating two-pass ducts are presented. Ducts of three different aspect ratios (W/H), 0.5, 1.0 and 2.0, are employed with a fixed hydraulic diameter ($D_h$) of 26.7 nm. $90^{\circ}$-rib turbulators are attached on the leading and trailing walls symmetrically. The rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.056, and the rib pitch-to-rib height ratio (p/e) is 10. The experimental conditions are the same as those of the previous part of the study. As the rib height-to-duct height ratio (e/H) increases, the core flow is more disturbed and accelerated in the midsections of ribs. Therefore, the obtained data show higher heat/mass transfer in the higher aspect ratio duct. Dean vortices also augment heat/mass transfer in the turn and in the upstream region of the second pass. However, the effect becomes less significant for the higher aspect ratio because the surface area increases in the present geometric condition. The effect of rotation produces heat/mass transfer discrepancy.

Characteristics of T-phase flow distribution and pressure drop in a horizontal T-type evaporator tube (수평 T형 증발관내 2상류의 유량분배 및 압력강하 특성)

  • 박종훈;조금남;조홍기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.658-668
    • /
    • 1999
  • The objective of the present study is to investigate the effect of experimental parameters on the hydrodynamic characteristics in a horizontal tee-type evaporator using R-22. The experimental apparatus consisted of an unheated tee-type test section, a liquid-vapor separator, a preheated, mass flow meters, a plate heat exchanger, pump, and other measurement devices. The experimental parameters were mass flux(500 and 600kg/$m^2$s), inlet quality(0.1~0.3) and separation ratio(0.3~0.7). Absolute pressure at the inlet of the test section was 0.652 MPa. The branch-to-inlet inner diameter ratio was 0.61. Pressure gradient at the branch section was larger than that at the run section at the same separation ratio. Pressure drop per unit length increased at the run section and decreased at the branch section as the separation ratio increased. Pressure drop predicted by the separated flow model agreed with experimental data within -35 to +16%. Generally, predicted values showed similar trend with the data. Mass flow ratio of vapor refrigerant was affected by the inlet quality more than the mass flux.

  • PDF

Flow Characteristics of Central-Driven Ejector with Design Parameters (중앙구동 이젝터의 설계변수에 따른 유동특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.645-651
    • /
    • 2015
  • The objective of this study is to experimentally investigate the effect of design parameter on the mass ratio of a central-driven ejector. The design parameters are the primary nozzle area and distance ratios, diffuser exit-area ratio and mixing-tube length ratio. The experimental setup was an open-loop continuous circulation system which has a movable nozzle ejector, an electric motor-pump, a water tank, a control panel and high-speed camera unit. We calculated the mass ratio using the measured primary and suction-flow rates with the experimental parameter of primary water-flow rate or pressure. The results showed that the mass ratio increased with the primary nozzle distance ratio and mixing tube length ratio, while the mass ratio decreased with the primary nozzle-area ratio and diffuser exit-area ratio.

Dynamic Vibration Absorber Having Coil Springs and Oil Damper for a Damped Vibration System (감쇠진동계에 부착된 코일스프링과 오일댐퍼로 구성된 동흡진기)

  • Ahn, C.W.;Park, S.C.;Lee, H.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.129-135
    • /
    • 1996
  • This paper presents the effectiveness of the dynamic vibration absorber consisting of a single mass, coil springs and oil damper on the resonance freauency ratio and amplitude ratio for damped linear systems, that is, primary vibration system with damping. The effects of the dynamic vibration absorber are investigated numerically and experimentally for values of mass ratio, natural frequency ratio, and damping ratio. The experimental results show good agreement with calculated ones. As a result, the characteristics shown by the present work are useful in optimal tuning the dynamic vibration absorber in practice.

  • PDF

ON THE PHYSICAL BASIS OF THE TULLY-FISHER RELATION

  • RHEE MYUNG-HYUN
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.15-39
    • /
    • 2004
  • We analyse the results of mass models derived from the HI rotation! curves of spiral galaxies and find that the slope of the luminous mass-circular velocity relation is close to 4. The luminous mass-circular velocity relation with a slope of about 4 can be explained by an anti-correlation between the mass surface density of luminous matter and the mass ratio of the dark and luminous components. We also argue that the conspiracy between luminous and dark matter exists in a local sense (producing a flat or smooth rotation curve) and in a global sense (affecting the mass ratio of the dark and luminous matter), maintaining the luminous mass-circular velocity relation with a slope of about 4. We therefore propose that the physical basis of the Tully-Fisher relation lies in the luminous mass-circular velocity relation. While the slope of the luminous mass-circular velocity relation is fairly well defined regardless of the dark matter contribution, the zero-point of the relation is still to be determined. The determination of the slope of the Tully-Fisher relation needs one more step: the mean trend of the luminosity-luminous mass relation determines the overall shape (slope) of the Tully-Fisher relation. The key parameter needed to determine the zero-point of the luminous mass-circular velocity relation and the slope of the Tully-Fisher relation obviously is the luminous mass-to-light ratio.