• Title/Summary/Keyword: mass optimization

Search Result 711, Processing Time 0.029 seconds

Development of FK506-hyperproducing strain and optimization of culture conditions in solid-state fermentation for the hyper-production of FK506

  • Mo, SangJoon;Yang, Hyeong Seok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.289-298
    • /
    • 2016
  • FK506 hyper-yielding mutant, called the TCM8594 strain, was made from Streptomyces tsukubaensis NRRL 18488 by mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, and FK506 sequential resistance selection. FK506 production by the TCM8594 strain improved 45.1-fold ($505.4{\mu}g/mL$) compared to that of S. tsukubaensis NRRL 18488 ($11.2{\mu}g/mL$). Among the five substrates, wheat bran was selected as the best solid substrate to produce optimum quantities of FK506 ($382.7{\mu}g/g$ substrate) under solid-state fermentation, and the process parameters affecting FK506 production were optimized. Maximum FK506 yield ($897.4{\mu}g/g$ substrate) was achieved by optimizing process parameters, such as wheat bran with 5 % (w/w) dextrin and yeast extract as additional nutrients, 70 % (v/w) initial solid substrate moisture content, initial medium pH of 7.2, $30^{\circ}C$ incubation temperature, inoculum level that was 10 % (v/w) of the cell mass equivalent, and a 10 day incubation. The results showed an overall 234 % increase in FK506 production after optimizing the process parameters.

Optimization of Bar-to-Bar Similar Friction Welding of Crank Shaft for Motor Vehicle and the Weld Fatigue Strength Properties and its AE Evaluation (자동차 크랭크 軸用 鋼材의 棒對棒 同種材 摩擦熔接의 疲勞强度 特性 및 AE 評價)

  • Oh, Sea-Kyoo;Yang, Hyung-Tae;Kim, Hun-Kyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.74-82
    • /
    • 1999
  • Nowadays, the crank shaft motor vehicle has become essential as the important component. The machining precision was asked for manufacturing the shaft. They could be unstable in the quality by the conventional are welding. Both in-process quailty control and high reliability of the weld are the major concerns in applying friction wlding to the economical and qualified mass-production. No reliable nondestructive monitoring method is avaliable at present to determine the real-time evaluation of automatic production quality control for bar-to-bar friction welding of the crank shaft of O.D 24mm for motor vehicle. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the cumulative counts of acoustic emission(AE) during plastic deformation periods of the welding and the tensile strength and other properties of the bar-to-bar welded joints of O.D. 24mm shaft as well as the various welding variables, as a new approach which attempts finally to develop real-time quality monitoring system for friction welding, resulting in practical possiblility of real-time quality control more than 100% joint efficiency showing good weld with no micro structural defects.

  • PDF

A Study on Impact Control of Planar Redundant Manipulator using A Intelligent Control (지능제어를 이용한 평면 여자유도 매니퓰레이터의 충돌제어에 관한 연구)

  • Yoo, Bong-Soo;Koo, Seong-Wan;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.787-796
    • /
    • 2008
  • When the manipulator collides with surroundings, there occurs an impulse. To reduce the impulse, the self motion should maintain the manipulator's position by the minimally effective mass. At this time, we can use the local joint torque minimization algorithm to resolve the redundancy. In this study, to reduce the impulse and damages by the impact between the manipulator and surroundings, new control algorithm for the minimization of the joint torque using the kinetic redundancy and the impact minimization is proposed. It adapts fuzzy logic and genetic algorithm to the conventional local joint torque minimization algorithm. The proposed algorithm is applied to a 3-DOF redundant planar manipulator. Simulation results show that the proposed algorithm works well.

Transformation of a Dynamic Load into an Equivalent Static Load and Shape Optimization of the Road Arm in Self-Propelled Howitzer (자주포 로드암 동하중의 상당 정하중으로의 변환 및 형상최적설계)

  • Choe, U-Seok;Gang, Sin-Cheon;Sin, Min-Jae;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3767-3781
    • /
    • 1996
  • Generally, dynamic loads are applied to real structures. Since the analysis with the dynamic load is extremely difficult, static loads are utilized by proper conversions of the dynamic loads. The dynamic loads are usually converted ot static loads by safety foactors of experiences. However, it may increase weight and decrease reliability. In this study, a method is proposed for the conversion process. An equivalent static load is calculated ot generate a same maximum displacement. The method is verified through numerical tests on a spring-mass systems of one and multi degrees-of freedom. It has been found that the duration time of the loads and the natural frequencies of the structures are critical in the conversion process. A road arem is a self-propelled howizer is selected for the application of the proposed method. The shape of the road arm is optimized under the converted static loads.

A Study of the Effects on the Structural Strength by Change of Spot Welding Pitch (점용접의 간격 변화에 의한 구조 강성 영향 평가 연구)

  • Hong, Min-Sung;Kim, Jong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.511-520
    • /
    • 2010
  • In general, spot welding is used at no welding rod or flux for the process, low welding point temperature compared to arc welding, short heating time, less damage to the parent material, and low deformation and residual stress, relatively. Also, because of the pressurization effect, better mechanical qualities of the welding parts are obtained. Therefore, in various fields of industry its rapid operation speed can make mass production possible such as motor industry. In FEM analysis for the spot welding process, it is effective to use simple modeling rather than complicated one because of its numerous number of spots and reduction of analysis time. Therefore, this study provides with not only simplification of modeling analysis by using beam component composition of structure without re-compositing the spot welding point mesh but also modeling analysis of which property of fracture strength is reflected. In addition complete spot welding model is examined at rectangular post shape (hat shape) by impact test, compared the results, and verified its validity. As a result, it is possible to optimize the welding position and to recognize the strength of structure and the proposed equal distance model shows the effect of welding point reduction and improvement of stiffness.

Study of HVAC system with air cleaning system for indoor air quality of subway station (지하철 역사의 실내공기질 개선을 위한 공조기 적용 공기청정장치 선정에 대한 기초연구)

  • Jung, Yee-Kyeong;Park, Jae-Hong;Lee, Ryang-Hwa;Yoon, Ki-Young;Hwang, Jung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.537-540
    • /
    • 2008
  • A numerical study has been carried out on the optimization of an air cleaning system which was installed in a heating, ventilation and air conditioning system (HVAC) system of subway station for particle removal. Required particle removal efficiencies of three different air cleaning systems were calculated from ventilation rate, and indoor/outdoor concentration of PM10. Mass balance equations of PM10 were used to solve the required particle removal efficiencies. Fibrous filter was considered as an air cleaning system. Calculations were carried out about two different places which were waiting area and platform of subway station, respectively. This study proposed optimized design and operation condition of each air cleaning system.

  • PDF

Optimization of $TiO_2$ Method to Identify the Phosphorylation Sites of ${\apha}$-Casein (${\apha}$-Casein의 인산화 위치 규명을 위한 티타늄 다이옥사이드($TiO_2$) 방법의 최적화)

  • Kim, Hye-Jeong;Park, Ja-Hye;Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.407-411
    • /
    • 2008
  • Phosphorylation plays the most important role in cell signaling mechanism. Various methods to identify the phosphorylation sites of proteins using tandem mass spectrometry (MS/MS) have been reported recently. Furthermore, the enrichment strategy such as Titanium dioxide ($TiO_2$) method should be combined with MS/MS analysis to effectively identify phosphorylation sites. It is necessary to optimize phosphopeptide-enrichment strategy, $TiO_2$ method in this study, due to the low amount of phosphorylated form followed by analyzing them by MS/MS. To evaluate the several conditions to enrich phosphopeptides using $TiO_2$ method, we used ${\apha}$-casein as a standard phosphoprotein and analyzed a representative phosphopeptide (VPQLEIVPNpSAEER) peak of MS spectrum. Batch is better than column method for binding and 300 g/l DHB in loading buffer is better than lower concentration of DHB. 3% TFA and pH 10.5 shows high efficiency of phosphopeptide-enrichment for washing and elution steps, respectively. Finally we identified various efficient conditions of phosphopeptide-enrichment method using $TiO_2$. This optimized method would assist in reliable identifying thousands of phosphorylation sites existed in low abundance from various complex proteins.

Optimal Supersonic Diffuser Design of Integrated Rocket Ramjet Engine (IRR형 Ramjet Intake 초음속 확산부 형상 최적설계)

  • 민병영;이재우;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2002
  • Optimal supersonic diffuser shape of integrated rocket ramjet engine was derived which maximizes the total pressure recovery. Mass flux is considered as a design constraint and the second oblique shock angle of the external ramp, the cowl-lip angle and the throat area are selected as design variables. Refined response surface method through design space transformation technique was developed and employed, and high confidence level of the regression model could be obtained. Genetic algorithm was implemented for both system optimizer and subspace regression model optimization. Virtual nozzle was located at the end of throat to adjust the back pressure. With only 20 aerodynamic analyses, optimal supersonic diffuser shape which has 14% improved total pressure recovery characteristics was successfully designed.

Ultra-precision Grinding Optimization of Mold Core for Aspheric Glass Lenses using DOE and Compensation Machining (실험계획법과 보정가공을 이용한 비구면 유리렌즈 성형용 코어의 초정밀 연삭가공 최적화)

  • Kim, Sang-Suk;Lee, Yong-Chul;Lee, Dong-Gil;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.45-50
    • /
    • 2007
  • The aspheric lens has become the most popular optical component used in various optical devices such as digital cameras, pick-up lenses, printers, copiers etc. Using aspheric lenses not only miniaturizes and reduces the weight of products, but also lower prices and higher field angles can be realized. Additionally, plastic lenses are being changed to glass lenses more recently because of low accuracy, low acid-resistance and low thermal-resistance in the plastic lenses. Currently, one fabrication method of glass lenses is using a glass-mold method with a high precision mold core for mass production. In this paper, DOE (Design Of Experiments) and compensation machining were adopted to improve the surface roughness and the form accuracy of the mold core. The DOE has been done in order to discover the optimal grinding conditions which minimize the surface roughness with factors such as work spindle revolution, turbine spindle revolution, federate and cutting depth. And the compensation machining is used to generate high form accuracy of the mold core. From various experiments and analyses, we could obtain the best surface roughness 5 nm in Ra, form accuracy $0.167\;{\mu}m$ in PV.

Optimization of Oil from Moringa oleifera seed using Soxhlet Extraction method

  • Ojewumi, M.E.;Oyekunle, D.T.;Emetere, M.E.;Olanipekun, O.O.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.5
    • /
    • pp.11-25
    • /
    • 2019
  • Extraction of oil from Moringa oleifera seed using Response Surface Methodology (RSM) was investigated. Effects of three factors namely: sample mass, particle size and extraction time on the response, Moringa oleifera a volume extracted, were determined. The Box-Behnken design of RSM was employed which resulted in 15 experimental runs. Extraction was carried out in a 250 ml Soxhlet extractor with Hexane and Ethanol as solvent. The Moringa oleifera seed powder was packed inside a muslin cloth placed in a thimble of the Soxhlet extractor. The extraction was carried out at 60℃ using thermostatic heating mantle. The solvent in the extracted oil was evaporated and the resulting oil further dried to constant weight in the oven. This study demonstrates that Moringa oleifera oil can be extracted from its seed using ethanol and acetone as extraction solvent. The optimum process variables for both solvent (ethanol and acetone) was determined at sample weight of 40 g, particle size of 325 ㎛ and extraction time of 8 hours. It can be deduced that using acetone as solvent produces a higher yield of oil at the same optimum variable conditions compared to when ethanol was used.