• Title/Summary/Keyword: mass optimization

Search Result 711, Processing Time 0.039 seconds

A Study on Optimal Location of Point Supports to Maximize the Fundamental Frequency (기본 진동수 최대화를 위한 지지점의 최적 위치에 관한 연구)

  • 류충현;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.818-823
    • /
    • 2002
  • Addition of point supports results in increasing the fundamental frequency of a structure, generally. In this paper, searching more effective location of point supports is a major object to maximize a fundamental frequency of various cantilever plates. Results are presented by aspect ratio of the plate, by design domain within which point supports generate, and by mass location equipped on the plate. Optimization method is applied due to expand the ESO(Evolutionary Structural Optimization) method.

  • PDF

Co-rotational Plane Beam-Dynamic Tip Load를 이용한 Drone Single Arm 최적 설계

  • Park, Seon-Hu;Lee, Sang-Gu;Sin, Sang-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.290-303
    • /
    • 2017
  • This paper aims to build a drone platform based on an optimum design of its single arm. We assumed its single arm as a cantilevered beam with a tip mass. Based on the numerical optimization theory, we conducted validation and optimization of a new design by comparing the results with the similar ones obtained by ANSYS. Finally, this design is reflected in the control simulation, and the requirement of an optimum structural design considering the resonance situation is demonstrated.

  • PDF

Optimization of Diesel Engine Performance with Dual Loop EGR considering Boost Pressure, Back Pressure, Start of Injection and Injection Mass (과급압력, 배압, 분사 시기 및 분사량에 따른 복합 방식 배기 재순환 시스템 적용 디젤 엔진의 최적화에 대한 연구)

  • Park, Jung-Soo;Lee, Kyo-Seung;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reduction from light-and heavy duty diesel engines. The future EGR type, dual loop EGR, combining features of high pressure loop EGR and low pressure loop EGR, was developed and optimized by using a commercial engine simulation program, GT-POWER. Some variables were selected to control dual loop EGR system such as VGT (Variable Geometry Turbocharger)performance, especially turbo speed, flap valve opening diameter at the exhaust tail pipe, and EGR valve opening diameter. Applying the dual loop EGR system in the light-duty diesel engine might cause some problems, such as decrease of engine performance and increase of brake specific fuel consumption (BSFC). So proper EGR rate (or mass flow) control would be needed because there are trade-offs of two types of the EGR (HPL and LPL) features. In this study, a diesel engine under dual loop EGR system was optimized by using design of experiment (DoE). Some dominant variables were determined which had effects on torque, BSFC, NOx, and EGR rate. As a result, optimization was performed to compensate the torque and BSFC by controlling start of injection (SOI), injection mass and EGR valves, etc.

Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization (소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능)

  • Kim, Byung-Jo;Kim, Tae-Won
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.66-73
    • /
    • 2009
  • Total thickness, areal density and mass moment of inertia of materials are important material factors for structural characteristics. In this work, a material-structural optimization was performed up to the maximum ballistic limit of multi-layered composite structures under high impact velocity followed by the investigation of the influence of these factors on an impact absorption performance. A unified model combined with Florence's and Awerbuch-Bonder's models was used in optimizing the multi-layered composite structure consisting of CMC, rubber, aluminum and Al-foam. Total thickness, areal density and mass moment of inertia were used for the optimization constraint. As shown in the results, the ballistic limit determined from a newly developed unified model was closely similar to the finite clement analysis. Additionally, the ballistic limit and impact absorption energy obtained by the optimized structure were improved approximately 16.8% and 26.7%, respectively comparing with a not optimized multi-layered structure.

Optimization of Medium and Fermentation Conditions for Mass Production of Bacillus licheniformis SCD121067 by Statistical Experimental Design (Bacillus licheniformis SCD121067 균체 생산성 증가를 위한 통계적 생산배지 및 발효조건 최적화)

  • Jeong, Yoo-Min;Lee, Ju-Hee;Chung, Hea-Jong;Chun, Gie-Taek;Yun, Soon-Il;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.539-546
    • /
    • 2010
  • In this work, mass production of Bacillus licheniformis SCD121067 through medium optimization by statistical experimental method was studied. First, galactose, yeast extract and potassium phosphate dibasic were selected as carbon, nitrogen and phosphate sources for mass production of B. licheniformis SCD121067 by using one factor at a time method. Second, according to the result of Plackett-Burman experimental design, key factors was yeast extract and $K_2HPO$. Finally, the response surface methodology was performed to obtain the optimum concentrations of two selected variables. The optimized medium composition consisted of 20 g/L galactose, 36 g/L yeast extract, 0.41 g/L $K_2HPO4$, 0.25 g/L $Na_2CO_3$, 0.4g/L $MgSO_4$ and 0.01g/L $CaCl_2$. Dry cell weight (15.4 g/L) by optimum production medium were increased 10 times, as compared to that determined with basic production medium (1.5 g/L). Fermentation conditions were examined for the mass production of B. licheniformis. The effect of temperature, agitation speed, pH and aeration rate on the mass production of B. licheniformis were also studied in a batch fermenter which was carried out in a 2.5 L bioreactor with a working volume of 1.5 L containing optimized production medium. As a result, dry cell weight of batch culture was 30.7 g/L at $42^{\circ}C$, 300 rpm, pH 8.0 and 2 vvm.

Multi-objective Optimization in Discrete Design Space using the Design of Experiment and the Mathematical Programming (실험계획법과 수리적방법을 이용한 이산설계 공간에서의 다목적 최적설계)

  • Lee, Dong-Woo;Baek, Seok-Heum;Lee, Kyoung-Young;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2150-2158
    • /
    • 2002
  • A recent research and development has the requirement for the optimization to shorten design time of modified or new product model and to obtain more precise engineering solution. General optimization problem must consider many conflicted objective functions simultaneously. Multi-objective optimization treats the multiple objective functions and constraints with design change. But, real engineering problem doesn't describe accurate constraint and objective function owing to the limit of representation. Therefore this study applies variance analysis on the basis of structure analysis and DOE to the vertical roller mill fur portland cement and proposed statistical design model to evaluate the effect of structural modification with design change by performing practical multi-objective optimization considering mass, stress and deflection.

Shape Design of the NFR Suspension Load Beam Considering Dynamic Characteristics (NFR 서스펜션의 동특성을 고려한 형상설계에 관한 연구)

  • Eun Gilsoo;Kim Nohyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.376.2-376
    • /
    • 2002
  • In this study, the shape of suspension load beam for NFR(Near Field Recording) was proposed, which was designed using Topology optimization based on Homogenization method. Lens and Micro-mirror are attached to the end of the suspension load beam for collection and control the light, which increasing the system mass. Increment of the system mass cause to decrease the tracking stiffness mode frequency. (omitted)

  • PDF

Simulation model at continuous steel-making process (연속제강공정의 simulation model)

  • Moon, Il;Song, Hyung-Keun;Shim, Jae-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.474-478
    • /
    • 1986
  • The phenomenon of a continuous Steel-making process was studied with a set of collected equilibrium data for the steel-oxidation reactions. Mass and Heat balances were also established. Mass transfer constants which are physically unmeasurable but escential for the simulation study in the steel-making process were calculated from the experimental data using an optimization technique. Based on these data various operating conditions and process characteristics were examined.

  • PDF

Optimal Design of CEDM considering the Dynamic Characteristics (제어봉 구동장치의 동적 특성을 고려한 최적설계)

  • 김인용;진춘언;김민규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.147-151
    • /
    • 1997
  • The dynamic characteristics of Control Element Drive Mechanism (CEDM) in Korea standard Nuclear Power Plant was reviewed as a secondary mass in a simplified two degree of freedom system, while the reactor vessel as a primary mass. The design improvement stratege to minimize each displacement amplitude of these primary and secondary masses was proposed. According to this stratege the designs of CEDM components, the shroud and the pressure housing, respectively, were changed using optimization technique.

  • PDF