• Title/Summary/Keyword: mass loss

Search Result 1,620, Processing Time 0.037 seconds

MASS-LOSS RATES OF OH/IR STARS

  • Suh, Kyung-Won;Kwon, Young-Joo
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.6
    • /
    • pp.235-242
    • /
    • 2013
  • We compare mass-loss rates of OH/IR stars obtained from radio observations with those derived from the dust radiative transfer models and IR observations. We collect radio observational data of OH maser and CO line emission sources for a sample of 1533 OH/IR stars listed in Suh & Kwon (2011). For 1259 OH maser, 76 CO(J=1-0), and 55 CO(J=2-1) emission sources, we compile data of the expansion velocity and mass-loss rate. We use a dust radiative transfer model for the dust shell to calculate the mass-loss rate as well as the IR color indices. The observed mass-loss rates are in the range predicted by the theoretical dust shell models corresponding to $\dot{M}=10^{-8}M_{\odot}/yr-10^{-4}M_{\odot}/yr$. We find that the dust model using a simple mixture of amorphous silicate and amorphous $Al_2O_3$ (20% by mass) grains can explain the observations fairly well. The results indicate that the dust radiative transfer models for IR observations generally agree with the radio observations. For high mass-loss rate OH/IR stars, the mass-loss rates obtained from radio observations are underestimated compared to the mass-loss rates derived from the dust shell models. This could be because photon momentum transfer to the gas shell is not possible for the physical condition of high mass-loss rates. Alternative explanations could be the effects of different dust-to-gas ratios and/or a superwind.

Constraining the Mass Loss Geometry of Beta Lyrae

  • Lomax, Jamie R.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.47-49
    • /
    • 2012
  • Massive binary stars lose mass by two mechanisms: jet-driven mass loss during periods of active mass transfer and by wind-driven mass loss. Beta Lyrae is an eclipsing, semi-detached binary whose state of active mass transfer provides a unique opportunity to study how the evolution of binary systems is affected by jet-driven mass loss. Roche lobe overflow from the primary star feeds the thick accretion disk which almost completely obscures the mass-gaining star. A hot spot predicted to be on the edge of the accretion disk may be the source of beta Lyrae's bipolar outflows. I present results from spectropolarimetric data taken with the University of Wisconsin's Half-Wave Spectropolarimeter and the Flower and Cook Observatory's photoelastic modulating polarimeter instrument which have implications for our current understanding of the system's disk geometry. Using broadband polarimetric analysis, I derive new information about the structure of the disk and the presence and location of a hot spot. These results place constraints on the geometrical distribution of material in beta Lyrae and can help quantify the amount of mass lost from massive interacting binary systems during phases of mass transfer and jet-driven mass loss.

Preprocessing and mass evolution of dark halos in the hydrodynamic zoom-in simulation

  • Han, San;Smith, Rory;Choi, Hoseung;Cortese, Luca;Catinella, Barbara;Contini, Emanuele;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.38.2-38.2
    • /
    • 2018
  • To understand the assembly of the galaxy population in clusters today, it is important to first understand preprocessing, the impact of environments prior to cluster infall. We use 15 cluster samples from YZiCS, a hydrodynamic cluster zoom-in simulation to determine the significance of preprocessing, and focus on the tidal mass loss of dark matter halos. We find ~48% of the cluster member halos were once satellites of another host. The preprocessed fraction depends on each cluster's recent mass growth history. Also, we find that the total mass loss is a clear function of the time spent in a host. However, two factors can increase the mass loss rate considerably. First, if the satellite mass is approaching the mass of its host. Second, when the halo suffers tidal mass loss at a higher redshift. Being in hosts before cluster infall enables halos to experience tidal mass loss for an extended period of time.

  • PDF

Mass-Loss Rate in Short-Period Cataclysmic Variables

  • Sirotkin, Fedir V.;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2010
  • The relationship between orbital periods of cataclysmic variables (CV) and mass-loss rates of their donor stars is an important subject of theoretical researches. The observed donor's radii are oversized in comparison with those of isolated unperturbed stars of the same mass, which is thought to be a consequence of the mass-loss. Using the empirical mass-radius relation of CVs and the Hayashi theory for changes in effective temperature, orbital period, and luminosity of the donor with the stellar radius, we find the mass-loss rate of CVs as a function of the orbital period P. The derived mass-loss rate is more or less constant at 10-9.6-10-10M$\odot$ yr-1 with P above 90 minutes and declines very rapidly with P below 90 minutes, reaching 10-10.3-10-11.7M$\odot$ yr-1 when P is close to the minimum period. The turnaround behavior of the mass-loss rate shape with P near the minimal period is much less pronounced than suggested by earlier numerical models, making observational detection of the turnaround highly unlikely. When applied to our new results, SDSS 1035, 1507, 1501 and 1433 systems, previously known as post-bounce CVs, are more likely to be systems that have yet to reach the minimal period.

  • PDF

Mass Loss Rates and Nutrient Dynamics of Oak and Mixed-Hardwood Leaf Litters in a Gyebangsan (Mt,) Forest Ecosystem

  • Kim, Choonsig
    • The Korean Journal of Ecology
    • /
    • v.26 no.6
    • /
    • pp.335-340
    • /
    • 2003
  • Patterns of mass loss and nutrient release from decomposing oak (Quercus mongolica) and mixed litters (Q. mongolica, Betula schmidtii, Acer pseudo-sieboldianum, Kalopanx pictus and Tilia amurensis) in a natural hardwood forest in Gyebangsan (Mt.) were examined using litterbags placed on the forest floor for 869 days. Mass loss rates from decomposing litter were consistently higher in mixed litter (59%) than in oak litter types (52%) during the study period. Nutrient concentrations such as nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg) from decomposing litter were also higher in mixed litter than in oak litter types. Nutrient concentrations (N, P, Ca, and Mg) increased compared with initial concentration of litter, while K concentrations dropped rapidly at the first 5 months and then stabilized. The results suggest that mas loss and nutrient release obtained from decomposing litter of single species in mixed hardwood forest ecosystem should be applied with caution because of the potential differences of mass loss and nutrient release between single litter and mixed litter types.

The Effects of Mass Loss on the Pre-Main Sequence Evolutionary Tracks of Stein's Model Stars

  • Um, In-Kyung
    • Publications of The Korean Astronomical Society
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1984
  • Under the context of Stein's linear theory of stellar models, the luminosity-effective temperature relationship is derived for contracting pre-main sequence stars which are losing mass, according to the empirical formula, given by Reimers (1975). The effects of mass loss on their evolution are investigated by calculating evolutionary tracks of 1. $1.5M_{\odot}$, $5M_{\odot}$, and $10M_{\odot}$, stars. Our calculations reveal that the effects of mass loss show up in the radiative equilibrium stage of the evolution. It is found that an increase of mass loss rate leads to delay the onset of radiative equilibrium, thus resulting in under-luminous main sequence stars. It is also noted that the mass loss prolongs the pre-main sequence life time. Detailed results of the calculations are discussed.

  • PDF

Enthalpy Flow Loss by Steady Mass Streaming in Pulse Tube Refrigerators (맥동관냉동기의 정상상태 질량흐름에 의한 엔탈피손실)

  • 백상호;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.623-631
    • /
    • 2000
  • Effects of the taper angle and the angular velocity of a pulse tube on the enthalpy flow loss associated with the steady mass streaming were analysis by two-dimensional analysis of a pulse tube with variable cross-section. It was shown that the steady mass flux can lead to a large steady second-order temperature. The enthalpy flow loss associated with the steady mass streaming increases as the angular velocity increases. For a pulse tube where the viscous penetration depth is far thinner than the inner radius, the enthalpy flow loss can be significantly reduced by tapering the pulse tube since both the steady mass flux and the steady second-order temperature decrease as the taper angle increase.

  • PDF

Preprocessing of dark halos in hydrodynamic cluster zoom-in simulations

  • Han, San;Smith, Rory;Choi, Hoseung;Cortese, Luca;Catinella, Barbara
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.61.3-61.3
    • /
    • 2018
  • To understand the assembly of the galaxy population in clusters today, it is important to first understand the impact of previous environments prior to cluster infall, namely preprocessing. We use 15 cluster samples from hydrodynamic zoom-in simulation YZiCS to determine the significance of preprocessing focusing primarily on the tidal mass loss of dark matter halos. We find ~48% of the cluster member halos were once satellites of another host. The preprocessed fraction is not a clear function of cluster mass. Instead, we find it is related to each individual cluster's recent mass growth history. We find that the total mass loss is a clear function of time spent in a host. However, two factors can considerably increase the mass loss rate. First, if the satellite mass is approaching the mass of its host. Second, when the halo suffers tidal mass loss at a higher redshift. The preprocessing provides an opportunity for halos to experience tidal mass loss for a more extended period of time than would be possible if they simply fell directly into the cluster, and at earlier epochs when hosts were more destructive to their satellites.

  • PDF

A Semi-empirical Mass-loss Rate in Short-period CVs

  • Kim, Woong-Tae;Sirotkin, Fedir V.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.76.2-76.2
    • /
    • 2010
  • We present the final results of our study on the mass-loss rate of donor stars in cataclysmic variables (CVs). Observed donors are oversized in comparison with those of isolated single stars of the same mass, which is thought to be a consequence of the mass loss. Using the empirical mass-radius relation of CVs and the homologous approximation for changes in effective temperature T2, orbital period P, and luminosity of the donor with the stellar radius, we find the semi-empirical mass-loss rate M2dot of CVs as a function of P. The derived M2dot is at ~10-9.5-10-10 $M\odot$/yr and depends weakly on P when P > 90 min, while it declines very rapidly towards the minimum period when P < 90 min. The semi-empirical M2dot is significantly different from, and has a less-pronounced turnaround behavior with P than suggested by previous numerical models. The semi-empirical P-M2dot relation is consistent with the angular momentum loss due to gravitational wave emission, and strongly suggests that CV secondaries with 0.075 $M\odot$ < M2 < 0.2 $M\odot$ are less than 2 Gyrs old. When applied to selected eclipsing CVs, our semi-empirical mass-loss rates are in good agreement with the accretion rates derived from the effective temperatures T1 of white dwarfs. Based on the semi-empirical M2dot, SDSS 1501 and 1433 systems that were previously identified as post-bounce CVs have yet to reach the minimal period.

  • PDF

Analysis of Flow Rate Inducing Voltage Loss in a 100 cm2 Class Molten Carbonate Fuel Cell

  • Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • This work focuses on the behavior of the overpotential increase due to a utilization rise in a molten carbonate fuel cell. The behavior is generally explained by Nernst loss, which is a kind of voltage loss due to the thermodynamic potential gradients in a polarization state due to the concentration distribution of reactant species through the gas flow direction. The evaluation of Nernst loss is carried out with a traditional experimental method of constant gas utilization (CU). On the other hand, overpotential due to the gas-phase mass-transport resistance at the anode and cathode shows dependence on the utilization, which can be measured using the inert gas step addition (ISA) method. Since the Nernst loss is assumed to be due to the thermodynamic reasons, the voltage loss can be calculated by the Nernst equation, referred to as a simple calculation (SC) in this work. The three values of voltage loss due to CU, ISA, and SC are compared, showing that these values rise with increases in the utilization within acceptable deviations. When we consider that the anode and cathode reactions are significantly affected by the gas-phase mass transfer, the behavior strongly implies that the voltage loss is attributable not to thermodynamic reasons, namely Nernst loss, but to the kinetic reason of mass-transfer resistance in the gas phase.