• Title/Summary/Keyword: mass error

Search Result 630, Processing Time 0.028 seconds

Right Ventricular Mass Quantification Using Cardiac CT and a Semiautomatic Three-Dimensional Hybrid Segmentation Approach: A Pilot Study

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.901-911
    • /
    • 2021
  • Objective: To evaluate the technical applicability of a semiautomatic three-dimensional (3D) hybrid CT segmentation method for the quantification of right ventricular mass in patients with cardiovascular disease. Materials and Methods: Cardiac CT (270 cardiac phases) was used to quantify right ventricular mass using a semiautomatic 3D hybrid segmentation method in 195 patients with cardiovascular disease. Data from 270 cardiac phases were divided into subgroups based on the extent of the segmentation error (no error; ≤ 10% error; > 10% error [technical failure]), defined as discontinuous areas in the right ventricular myocardium. The reproducibility of the right ventricular mass quantification was assessed. In patients with no error or < 10% error, the right ventricular mass was compared and correlated between paired end-systolic and end-diastolic data. The error rate and right ventricular mass were compared based on right ventricular hypertrophy groups. Results: The quantification of right ventricular mass was technically applicable in 96.3% (260/270) of CT data, with no error in 54.4% (147/270) and ≤ 10% error in 41.9% (113/270) of cases. Technical failure was observed in 3.7% (10/270) of cases. The reproducibility of the quantification was high (intraclass correlation coefficient = 0.999, p < 0.001). The indexed mass was significantly greater at end-systole than at end-diastole (45.9 ± 22.1 g/m2 vs. 39.7 ± 20.2 g/m2, p < 0.001), and paired values were highly correlated (r = 0.96, p < 0.001). Fewer errors were observed in severe right ventricular hypertrophy and at the end-systolic phase. The indexed right ventricular mass was significantly higher in severe right ventricular hypertrophy (p < 0.02), except in the comparison of the end-diastolic data between no hypertrophy and mild hypertrophy groups (p > 0.1). Conclusion: CT quantification of right ventricular mass using a semiautomatic 3D hybrid segmentation is technically applicable with high reproducibility in most patients with cardiovascular disease.

On the control of vibratory MEMS gyroscopes

  • Choura, S.;Aouni, N.;El-Borgi, S.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.793-810
    • /
    • 2010
  • This paper addresses the control issue of vibratory MEMS-based gyroscopes. This study considers a gyroscope that can be modeled by an inner mass attached to an outer mass by four springs and four dampers. The outer mass itself is attached to the rotating frame by an equal number of springs and dampers. In order to measure the angular rate of the rotating frame, a driving force is applied to the inner mass and the Coriolis force is sensed along the y-direction associated with the outer mass. Due to micro-fabrication imperfections, including anisoelasticity and damping effects, both gyroscopes do not allow accurate measurements, and therefore, it becomes necessary to devise feedback controllers to reduce the effects of such imperfections. Given an ideal gyroscope that meets certain performance specifications, a feedback control strategy is synthesized to reduce the error dynamics between the actual and ideal gyroscopes. For a dual-mass gyroscope, it is demonstrated that the error dynamics are remarkably decreased with the application of four actuators applied to both masses in the x and y directions. It is also shown that it is possible to reduce the error dynamics with only two actuators applied to the outer mass only. Simulation results are presented to prove the efficiency of the proposed control design.

MASS ESTIMATE TECHNIQUES OF MOLECULAR CLOUDS

  • Lee, Young-Ung
    • Publications of The Korean Astronomical Society
    • /
    • v.9 no.1
    • /
    • pp.55-68
    • /
    • 1994
  • We have reviewed three different techniques to estimate molecular cloud mass, and discussed the uncertainties involved. We found that determination of the most important parameter, the $^{13}CO$ abundance, is not very sensitive to the real LTE conditions, and that any possible error in deriving LTE column density may not introduce an error in the total gas column density, as far as the visual extinction is established for the object cloud. The virial technique always endows the largest mass estimate as there are several uncertainties, even if the cloud is in virial equilibrium. The strong indicator of the cloud perturbation is the centroid velocity dispersion. The mass using CO luminosity is based on the empirical law, but weakly dependent on the virial assumption, thus it still gives a larger mass estimate. The mass discrepancy is likely to be inevitable, and a factor of two or three difference between mass estimates could easily be attributed to the uncertainties mentioned above. The LTE mass estimate may be the most reliable one if we use the relation visual extinction and $^{13}CO$ column density of the object cloud, and the intercept is included.

  • PDF

Vision-based Potato Detection and Counting System for Yield Monitoring

  • Lee, Young-Joo;Kim, Ki-Duck;Lee, Hyeon-Seung;Shin, Beom-Soo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.103-109
    • /
    • 2018
  • Purpose: This study has been conducted to develop a potato yield monitoring system, consisting of a segmentation algorithm to detect potatoes scattered on a soil surface and a counting system to count the number of potatoes and convert the data from two-dimensional images to masses. Methods: First, a segmentation algorithm was developed using top-hat filtering and processing a series of images, and its performance was evaluated in a stationary condition. Second, a counting system was developed to count the number of potatoes in a moving condition and calculate the mass of each using a mass estimation equation, where the volume of a potato was obtained from its two-dimensional image, and the potato density and a correction factor were obtained experimentally. Experiments were conducted to segment potatoes on a soil surface for different potato sizes. The counting system was tested 10 times for 20 randomly selected potatoes in a simulated field condition. Furthermore, the estimated total mass of the potatoes was compared with their actual mass. Results: For a $640{\times}480$ image size, it took 0.04 s for the segmentation algorithm to process one frame. The root mean squared deviation (RMSD) and average percentage error for the measured mass of potatoes using this counting system were 12.65 g and 7.13%, respectively, when the camera was stationary. The system performance while moving was the best in L1 (0.313 m/s), where the RMSD and percentage error were 6.92 g and 7.79%, respectively. For 20 newly prepared potatoes and 10 replication measurements, the counting system exhibited a percentage error in the mass estimation ranging from 10.17-13.24%. Conclusions: At a travel speed of 0.313 m/s, the average percentage error and standard deviation of the mass measurement using the counting system were 12.03% and 1.04%, respectively.

A Study on Development of Railway Reducer for Low Noise/Vibration (소음/진동을 고려한 철도 감속기 개발에 대한 연구)

  • 이형우;박노길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2004
  • A dynamic model of railway reducer is developed by the lumped parameter method. The model accounts for shafts, bearings flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of gear teeth, and bearing life are considered. Excitation forces of railway reduction are considered as the mass unbalance of the rotors, misalignment and a function of gear transmission error which comes from the modified tooth surface. A campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not the critical speed. The program which can be used to analyze and predict vibration/noise characteristics by mass unbalance, misalignment and gear transmission error of railway reduction is developed with this system model.

Performance Improvement of Asynchronous Mass Memory Module Using Error Correction Code (에러 보정 코드를 이용한 비동기용 대용량 메모리 모듈의 성능 향상)

  • Ahn, Jae Hyun;Yang, Oh;Yeon, Jun Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.112-117
    • /
    • 2020
  • NAND flash memory is a non-volatile memory that retains stored data even without power supply. Internal memory used as a data storage device and solid-state drive (SSD) is used in portable devices such as smartphones and digital cameras. However, NAND flash memory carries the risk of electric shock, which can cause errors during read/write operations, so use error correction codes to ensure reliability. It efficiently recovers bad block information, which is a defect in NAND flash memory. BBT (Bad Block Table) is configured to manage data to increase stability, and as a result of experimenting with the error correction code algorithm, the bit error rate per page unit of 4Mbytes memory was on average 0ppm, and 100ppm without error correction code. Through the error correction code algorithm, data stability and reliability can be improved.

Are theoretically calculated periods of vibration for skeletal structures error-free?

  • Mehanny, Sameh S.F.
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.17-35
    • /
    • 2012
  • Simplified equations for fundamental period of vibration of skeletal structures provided by most seismic design provisions suffer from the absence of any associated confidence levels and of any reference to their empirical basis. Therefore, such equations may typically give a sector of designers the false impression of yielding a fairly accurate value of the period of vibration. This paper, although not addressing simplified codes equations, introduces a set of mathematical equations utilizing the theory of error propagation and First-Order Second-Moment (FOSM) techniques to determine bounds on the relative error in theoretically calculated fundamental period of vibration of skeletal structures. In a complementary step, and for verification purposes, Monte Carlo simulation technique has been also applied. The latter, despite involving larger computational effort, is expected to provide more precise estimates than FOSM methods. Studies of parametric uncertainties applied to reinforced concrete frame bents - potentially idealized as SDOF systems - are conducted demonstrating the effect of randomness and uncertainty of various relevant properties, shaping both mass and stiffness, on the variance (i.e. relative error) in the estimated period of vibration. Correlation between mass and stiffness parameters - regarded as random variables - is also thoroughly discussed. According to achieved results, a relative error in the period of vibration in the order of 19% for new designs/constructions and of about 25% for existing structures for assessment purposes - and even climbing up to about 36% in some special applications and/or circumstances - is acknowledged when adopting estimates gathered from the literature for relative errors in the relevant random input variables.

Mass measuremeant of soilid density standard using weight exchanger (분동교환기를 이용한 고체밀도기준물의 질량측정)

  • 이용재;장경호;오재윤;정상덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1659-1662
    • /
    • 2003
  • The mass measurement of solid density standards using weight exchanger is described. KRISS(Korea Research Institute od Standards and Science) has several solid density standards. Their mass have been measured manually only using a mass comparator(Mettler, 1kg - 0.01mg). However, the uncertaity of the manual mass measurement is up to 300 microgarm much more than 32 microgram of advanced NMIS(National Metrology Institutes) for 1 kg silicon sphere which is primary density standards due to an eccentric error and buoyancy correction error. The new system with a weight exchanger is designed and built to improve the measurement accuracy. It comprises a weight exchager, a mass comparator, air density instruments, and application program for automatic measurement. It is evaluated by measuring several elements in an air tight chamber to verify the performance of it.

  • PDF

Algorithm to Improve Mass Spectral Resolution of Gas Chromatography Mass Spectrometer (가스크로마토그래피 질량분석기의 질량 스펙트럼 해상도 개선 알고리즘)

  • Choi, Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1232-1238
    • /
    • 2018
  • This paper proposes methods for improving mass spectral resolution for a gas chromatograph mass spectrometer. The slope signs of the 1st and 2nd fitting functions for the ion signal block of each mass index are obtained, and the unnecessary element signals in the ion signal block are removed. The spectrum can be obtained by obtaining the second-order fitting function of the reconstructed ion signal block using only the effective ion signals. In addition, the resolution of the mass spectrum can be improved by correcting the error caused by the shift of the spectral peak position. To verify the performance of the proposed methods, computer simulations were performed using the actual ion signals obtained from the GC-MS system under development. Simulation results show that the proposed method is valid.

Improvement of Spectrum Detection Algorithm for Mass Spectrometer (질량분석기를 위한 스펙트럼 검출 알고리즘의 개선)

  • Lee, Young Hawk;Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • An improved method of spectrum detection algorithm for mass spectrum analysis system is proposed. In the conventional spectrum detection algorithm that utilizes the results of the linear approximation and quadratic curve fitting on the ion signal block of each mass index, it is possible to reduce the detection error in the mass spectrum detection by further improving the condition of eliminating the invalid ion signals. Also, the proposed method can reduce the estimation error of the peak value of the mass spectrum by using the result of quadratic curve fitting for the effective ion signal block in which the peak position error is corrected. To evaluate the effectiveness of the proposed method, computer simulations were carried out step by step using the measured ion signal. Also, by comparing the rate of false detection for several inputs, the proposed method showed better detection performance than the conventional method.