• 제목/요약/키워드: mass contribution

검색결과 340건 처리시간 0.028초

PMF 모델을 이용한 경산지역 PM2.5의 오염원 기여도 추정 (Source Apportionment of PM2.5 in Gyeongsan Using the PMF Model)

  • 정영진;황인조
    • 한국대기환경학회지
    • /
    • 제31권6호
    • /
    • pp.508-519
    • /
    • 2015
  • The objective of this study was to quantitatively estimate $PM_{2.5}$ source contribution in Gyeongsan. Ambient $PM_{2.5}$ samples have been collected on zefluor, quartz and nylasorb filter by $PM_{2.5}$ samplers of cyclone method from September 2010 to December 2012. Collected samples were analyzed for determining 17 inorganic elements, 8 ions, and 8 carbon components after pretreatment. Based on these chemical information, the PMF model was applied to estimate the quantitative contribution of air pollution sources. The results of the PMF modeling showed that the sources were apportioned by biomass burning source (15.5%), secondary sulfate source (16.0%), industry source (10.4%), soil source (7.0%), gasoline source (9.1%), incinerator source (10.4%), diesel emission source (11.0%), and secondary nitrate source (20.6%), respectively. To analyze local source impacts from various wind directions, the CPF analysis were performed using source contribution results with the wind direction values measured at the site.

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate)

  • 전상욱;정원석;이준식
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

Numerical Calibration method of an Electrochemical Probe for Measurement of Wall-Shear-Stress in Two-Phase Flow

  • Park, Ki-Yong;No, Hee-Cheon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.227-232
    • /
    • 1996
  • The one-third calibrating relation by steady solution can cause large error when applied to an unsteady flow with large amplitude waves. Extended calibrating method, which can treat the normal convective contribution, is developed. The normal mass convective term is included into the 2-D mass transport equation by means of rms value and random function. The unknown shear rate is numerically determined by solving the 2-D mass transport equation inversely. This recovery method which predicts the unknown shear rate is constructed. It is found that it works very well without distortion. The inclusion of the normal convective term has a negligible effect on the mass transfer coefficient.

  • PDF

Target Transformation Factor Analysis를 이용한 부산시 분진오염원의 양적 추정 (Quantitative Source Estimation of Particulate Matters in Pusan Area Using the Target Transformation Factor Analysis)

  • 김태오;김동술;나진균
    • 한국대기환경학회지
    • /
    • 제6권2호
    • /
    • pp.135-146
    • /
    • 1990
  • The purpose of the study was to identify sources of particulate matters statistically and to estimate the mass contribution quantitatively in the Pusan metropolitan area. Then, the study has used the TTFA (target transformation factor analysis) model, a receptor model, to apportion aerosol mass with the raw data of 106 ambient samples characterized by 24 heavy metal variables. The TTFA was extensively applied to generate source profiles and their aerosol mass contributions. Though a couple of sources were not identified, four to seven sources were able to be extracted at 3 different sites (Jang Rim-Dong, Kwang Bok-Dong, and Kwang An-Dong) in Pusan area and finally mass conributions could be calculated.

  • PDF

Evolution of primary stars in Pop III binary systems

  • Lee, Hunchul;Yoon, Sung-Chul
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.77.4-78
    • /
    • 2016
  • Binary interactions may have significant impact on Pop III stellar evolution. Pop III single star evolution indicates that for primary masses less than $20M_{\odot}$, no significant binary mass transfer would occur before core helium exhaustion. We perform binary system evolution for various primary masses ($20M_{\odot}$ < $M_1$ < $60M_{\odot}$) and initial periods under same mass ratio $M_2/M_1=0.9$, and follow the evolution and mass transfer of the primary star. If binary mass transfer occurs during post main sequence, the primary star does not evolve into naked helium star and still contain significant hydrogen in the envelope. During the post mass transfer phase, the primary star evolves redward, and does not become sufficiently hot to enhance the number of ionizing photons, compared to the case of single star evolution for a given initial mass. This result implies that primary stars of massive Pop III binary systems would have little contribution to the reionization in the early universe. Given the large hydrogen content ($0.326-1.793M_{\odot}$), the primary stars that underwent stable mass transfers would explode as a Type IIb supernova, and it would be difficult for Pop III binary stars to produce Type Ib/c supernovae that look similar to those found in the local universe.

  • PDF

CMB 수용모델을 이용한 PM2.5의 오염원 기여도 분석 (Pollutant Sources Contribution Analysis of PM2.5 using The CMB Receptor Model)

  • 구태완;홍민선;문수호;김호정
    • 한국응용과학기술학회지
    • /
    • 제36권3호
    • /
    • pp.866-875
    • /
    • 2019
  • 본 연구에서는 CMB(Chemical Mass Balance) 모델을 이용하여 $PM_{2.5}$에 대한 오염원 확인 및 오염원별 기여도를 분석하였다. A시의 배출원별 기여도 순위는 비산먼지(30.1%) > 생물성 연소(21.9%) > 2차 오염물질(21.1%) > 도로이동오염원(19.3%) > 면오염원(7.6%) 순이고, CMB 모델 기여도와 CAPSS(Clean Air Policy Support System) 배출자료 기여도 비교에서 증가한 배출원은 생물성 연소와 2차 오염물질이고, 감소한 배출원은 도로이동오염원, 비산먼지, 면오염원으로 분석되었다.

An analytical model to decompose mass transfer and chemical process contributions to molecular iodine release from aqueous phase under severe accident conditions

  • Giedre Zablackaite;Hiroyuki Shiotsu;Kentaro Kido;Tomoyuki Sugiyama
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.536-545
    • /
    • 2024
  • Radioactive iodine is a representative fission product to be quantified for the safety assessment of nuclear facilities. In integral severe accident analysis codes, the iodine behavior is usually described by a multi-physical model of iodine chemistry in aqueous phase under radiation field and mass transfer through gas-liquid interface. The focus of studies on iodine source term evaluations using the combination approach is usually put on the chemical aspect, but each contribution to the iodine amount released to the environment has not been decomposed so far. In this study, we attempted the decomposition by revising the two-film theory of molecular-iodine mass transfer. The model involves an effective overall mass transfer coefficient to consider the iodine chemistry. The decomposition was performed by regarding the coefficient as a product of two functions of pH and the overall mass transfer coefficient for molecular iodine. The procedure was applied to the EPICUR experiment and suppression chamber in BWR.

Pure additive contribution of genetic variants to a risk prediction model using propensity score matching: application to type 2 diabetes

  • Park, Chanwoo;Jiang, Nan;Park, Taesung
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.47.1-47.12
    • /
    • 2019
  • The achievements of genome-wide association studies have suggested ways to predict diseases, such as type 2 diabetes (T2D), using single-nucleotide polymorphisms (SNPs). Most T2D risk prediction models have used SNPs in combination with demographic variables. However, it is difficult to evaluate the pure additive contribution of genetic variants to classically used demographic models. Since prediction models include some heritable traits, such as body mass index, the contribution of SNPs using unmatched case-control samples may be underestimated. In this article, we propose a method that uses propensity score matching to avoid underestimation by matching case and control samples, thereby determining the pure additive contribution of SNPs. To illustrate the proposed propensity score matching method, we used SNP data from the Korea Association Resources project and reported SNPs from the genome-wide association study catalog. We selected various SNP sets via stepwise logistic regression (SLR), least absolute shrinkage and selection operator (LASSO), and the elastic-net (EN) algorithm. Using these SNP sets, we made predictions using SLR, LASSO, and EN as logistic regression modeling techniques. The accuracy of the predictions was compared in terms of area under the receiver operating characteristic curve (AUC). The contribution of SNPs to T2D was evaluated by the difference in the AUC between models using only demographic variables and models that included the SNPs. The largest difference among our models showed that the AUC of the model using genetic variants with demographic variables could be 0.107 higher than that of the corresponding model using only demographic variables.

하프 빈야사 요가 수련 전·후의 역학적 에너지 변화 - 신체분절의 에너지 기여도 및 최고무게중심과 분절 에너지의 상관관계를 중심으로 - (Change of Mechanical Energy before and after Training of Half Vinyasa Yoga - Energy Contribution of Body Segments and Correlation between Maximum COG and Segmental Energy -)

  • 유실;하종규
    • 한국운동역학회지
    • /
    • 제23권4호
    • /
    • pp.395-402
    • /
    • 2013
  • The purpose of this study was to investigate change of mechanical energy before and after training of half vinyasa yoga. Thirteen subjects (height: $163.4{\pm}3.9$ cm, body mass: $54.9{\pm}7.3$ kg, age: $20.0{\pm}0.49$ yrs) participated in this experiment. The motions of half vnyasa yoga were captured with Vicon system and parameters were calculated with Visual-3D. After training of half vinyasa yoga, the mechanical energies of body segments were increased and increments of mechanical energies in the lower segments were greater than the upper segments. The phase increments of mechanical energies increased phase 1, phase 2, and phase 3 in order. After training of half vinyasa yoga, phase contributions of body segments were similar before training of half vinyasa yoga. The contribution of mechanical energy on trunk segment in body was the greatest contribution of upper segments; also that of mechanical energy on thigh segment in body was the greatest contribution of lower segments. Before training, the coefficient of correlation between vertical center of gravity (CoGz) and mechanical energy of phase 3 was a -.559, but after training, the coefficient of correlation between CoGz and mechanical energy of phase 2 was a .587. These findings suggest that the training of half vinyasa yoga may be increasing the mechanical energies of body segments.