• Title/Summary/Keyword: masonry strength

Search Result 175, Processing Time 0.02 seconds

An Analysis on the Properties of Cement Mortar using Sewage Sludge Incineration Ash (하수슬러지 소각재를 이용한 시멘트 모르타르의 특성분석)

  • Ryu, Heon-Ki;Park, Jeong-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.55-62
    • /
    • 2010
  • This is an experimental research in order to judge the applicability of sewage sludge incineration ash having applied the mixing proportion needed to manufacture bricks and to do plaster work with addition of hwangtoh and slaked lime as a part of the methods for utilizing the wastes produced from sewage sludge incineration ash. Based on the results from experiment and analysis, it is judged that, in case of mixing proportion of 1:2 for the purpose of plastering and masonry work, the cement mortar produced by using a 10% addition ratio of sewage sludge incineration ash with mixture of hwangtoh covering all range of addition ratio, and also the cement mortar produced by using a 20% of sewage sludge incineration ash together with 0% and 10% addition ratio of hwangtoh, was possible to be applied to the practical use. In case of mixing proportion of 1:7 for manufacture of bricks and blocks, if such brick and block products are produced with 10% and 20% addition ratio of sewage sludge incineration ash having added aggregate fines or stone dust that has been actually used in brick and block manufacturing, it is judged that these bricks and blocks could be practically used in the job sites, although strength development is a little bit lower.

  • PDF

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.

A Study on the Properties and Mix Design of Eco-friendly Concrete Bricks Using Recycled Fine Aggregates (순환잔골재를 활용한 친환경 콘크리트 벽돌의 물성 및 배합설계 연구)

  • Choi, Hyungkook;Yang, Sungchul;Son, Jaeho;Lee, Seunghyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.5
    • /
    • pp.32-40
    • /
    • 2024
  • In the construction industry, lack of reliability in the quality of recycled aggregates, harmful substance problems, and negative consumer perceptions limit the expansion of the use of recycled aggregates. In this respect, existing studies mainly focus on the use of recycled coarse aggregates in concrete in consideration of durability. On the other hand, in the case of recycled fine aggregates, not only are there insufficient cases applied to major structures, but the scope of application is very limited due to lack of awareness. Therefore, the main purpose of this study is to present the possibility of their application in bearing and non-bearing wall structures through physical characteristics experiments of concrete bricks for masonry according to various mixing ratios of recycled fine aggregates and cement amounts. To this end, the compressive strength and absorption rate of concrete bricks were measured focusing on the mixing ratio of the recycled fine aggregate and the crushed fine aggregate and the amount of cement. As a result, it is found that it is possible to use 100% of recycled fine aggregate for 200kg/m3 of cement or 25% of crushed fine aggregate mixed with 75% of recycled fine aggregate for the same amount of cement to achieve the compressive strength of 13MPa, witch is one of the quality requirements for concrete bricks for bearing walls. In addition, it is found that to meet the strength of 8MPa, one of the quality requirements for non-bearing walls, it is sufficient to use 100% of the recycled fine aggregate for 100kg/m3 of cement. Through the absorption rate tests, it is also confirmed that the absorption rate of the concrete brick is 13% or less by meeting the required performance criteria. This means that even if recycled fine aggregate is used in the manufacture of concrete bricks, the quality standards required by KS F 4004 (concrete bricks) can be sufficiently met.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.

Application of geophysical exploration methods for safety diagnosis of the basement of stone pagoda (지구물리탐사 방법의 석탑지반 안전진단에의 적용)

  • Suh, Man-Cheol;Oh, Jin-Yong;Kim, Ki-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.70-83
    • /
    • 2004
  • The safety diagnosis of cultural assets is Primarily focused on its non-destructiveness. Research on the nondestructive diagnosis and conservation of masonry cultural heritage is the key which is considered by technologic kernel. Geophyscial Prospecting as nondestructive diagnostic technology plays an important role in the characterization of the foundation of stone pagodas. It is natural that understanding of shallow subsurface condition beneath them is essential for their structural safety diagnosis. As an example, the nondestructive geophysical methods were applied to two three-story stone pagodas, Seokgatap (height 10.8 m, width 4.4 m, weight 82.3 ton) and Dabotap (height 10.4 m, width 7.4 m, weight 123.2 ton) which were built in 791 at Bulkuksa temple. An earlier archaeological investigation shows that stone pagodas have experienced severe weathering process and are slightly leaning, which will threaten their stability At the base part of Dabotap, an offset of the stone alignment is also observed. Direct measurements of ultrasonic velocities was introduced for the mechanical properties of the stone The velocity ranges of ultrasonic waves for Dabotap and Seokgatap are 1217${\~}$4403 m/s and 584${\~}$5845 m/s, respectively, and the estimated averages of the uniaxial compressive strength are 463 kg/$cm^2$ and 409 kg/$cm^2$, respectively. Site characteristics, around the pagodas are determined by the measurement of multiple properties such as seismic velocity, resistivity, image of ground-penetrating radar, On the basis of the higher velocity structure, the site of Seokgatap appears to have solider stability than the Seokgatap site. Near the pagodas, higher(up to 2200 $\Omega$m) resistivity is present whereas their outskirts have as low as 200 $\Omega$m. By the combined results of each geophyscial methods, the subsurface boundaries of two stone pagodas are revealed. The Dabotap site is in the form of an octagon having 6-m-long side with the depth of ${\~}$4 m, whereas the Seokgatap site is the 8 ${\times}$ 10 m rectangle with the depth of 3 m. These subsurface structures appear to reflect the original foundations constructed against the stone load of ${\~}8 ton/m^2$. At the subsurface beneath the northeast of each pagoda, low seismic velocity as well as low resistivity is prominent. It is interpreted to represent the weak underground condition which Is the possible cause of the slightly leaning pagodas toward the NNW.

  • PDF