• Title/Summary/Keyword: masonry panel

Search Result 22, Processing Time 0.017 seconds

Experimental and analytical evaluation of a low-cost seismic retrofitting method for masonry-infilled non-ductile RC frames

  • Srechai, Jarun;Leelataviwat, Sutat;Wongkaew, Arnon;Lukkunaprasit, Panitan
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.699-712
    • /
    • 2017
  • This study evaluates the effectiveness of a newly developed retrofitting scheme for masonry-infilled non-ductile RC frames experimentally and by numerical simulation. The technique focuses on modifying the load path and yield mechanism of the infilled frame to enhance the ductility. A vertical gap between the column and the infill panel was strategically introduced so that no shear force is directly transferred to the column. Steel brackets and small vertical steel members were then provided to transfer the interactive forces between the RC frame and the masonry panel. Wire meshes and high-strength mortar were provided in areas with high stress concentration and in the panel to further reduce damage. Cyclic load tests on a large-scale specimen of a single-bay, single-story, masonry-infilled RC frame were carried out. Based on those tests, the retrofitting scheme provided significant improvement, especially in terms of ductility enhancement. All retrofitted specimens clearly exhibited much better performances than those stipulated in building standards for masonry-infilled structures. A macro-scale computer model based on a diagonal-strut concept was also developed for predicting the global behavior of the retrofitted masonry-infilled frames. This proposed model was effectively used to evaluate the global responses of the test specimens with acceptable accuracy, especially in terms of strength, stiffness and damage condition.

Hysteretic performance of a novel composite wall panel consisted of a light-steel frame and aerated concrete blocks

  • Wang, Xiaoping;Li, Fan;Wan, Liangdong;Li, Tao
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.861-871
    • /
    • 2021
  • This study aims at investigating the hysteretic performance of a novel composite wall panel fabricated by infilling aerated concrete blocks into a novel light-steel frame used for low-rise residential buildings. The novel light-steel frame is consisted of two thin-wall rectangular hollow section columns and a truss-beam assembled using patented U-shape connectors. Two bare light-steel frames and two composite wall panels have been tested to failure under horizontal cyclic loading. Hysteretic curves, lateral resistance and stiffness of four specimens have been investigated and analyzed. Based on the testing results, it is found that the masonry infill can significantly increase the lateral resistance and stiffness of the novel light-steel frame, about 2.3~3 and 21.2~31.5 times, respectively. Failure mode of the light-steel frame is local yielding of the column. For the composite wall panel, firstly, masonry infill is crushed, subsequently, local yielding may occur at the column if loading continues. Hysteretic curve of the composite wall panel obtained is not plump, implying a poor energy dissipation capacity. However, the light-steel frame of the composite wall panel can dissipate more energy after the masonry infill is crushed. Therefore, the composite wall panel has a much higher energy dissipation capacity compared to the bare light-steel frame.

Parametric study of energy dissipation mechanisms of hybrid masonry structures

  • Gao, Zhenjia;Nistor, Mihaela;Stanciulescu, Ilinca
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.387-401
    • /
    • 2021
  • This paper provides a methodology to analyze the seismic performance of different component designs in hybrid masonry structures (HMS). HMS, comprised of masonry panels, steel frames and plate connectors is a relatively new structural system with potential applications in high seismic areas. HMS dissipate earthquake energy through yielding in the steel components and damage in the masonry panels. Currently, there are no complete codes to assist with the design of the energy dissipation components of HMS and there have been no computational studies performed to aid in the understanding of the system energy dissipation mechanisms. This paper presents parametric studies based on calibrated computational models to extrapolate the test data to a wider range of connector strengths and more varied reinforcement patterns and reinforcement ratios of the masonry panels. The results of the numerical studies are used to provide a methodology to examine the effect of connector strength and masonry panel design on the energy dissipation in HMS systems. We use as test cases two story structures subjected to cyclic loading due to the availability of experimental data for these configurations. The methodology presented is however general and can be applied to arbitrary panel geometries, and column and story numbers.

Lateral loading test for partially confined and unconfined masonry panels

  • Tu, Yi-Hsuan;Lo, Ting-Yi;Chuang, Tsung-Hua
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.379-390
    • /
    • 2020
  • Four full-scaled partially confined and unconfined masonry panels were tested with monotonic lateral loads. To study the effects of vertical force and boundary columns, two specimens with no boundary columns were subjected to different vertical forces, while two wing-wall specimens had the column placed eccentrically and in the middle, respectively. The specimens with no boundary columns exhibited ductile rocking behavior, where the lateral strength increased with increasing vertical compression. The wing-wall specimens with columns behaved as strut-and-tie systems. The column-panel interaction resulted in greater strength, lower deformation capacity and differences in failure modes. A comparison with analytical models showed that rocking strength can be accurately estimated using vertical force and the panel aspect ratio for panels with no boundary columns. The estimation for lateral strength on the basis of a panel section area indicated scattered error for wing-wall specimens.

Numerical Simulation of the Response of a Masonry-Infilled RC Frame by Strut Models (스트럿 모델에 의한 조적채움 RC 골조의 수치적 모의)

  • 이한선;우성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.439-444
    • /
    • 2003
  • The response of a 1:5 scale 3-story masonry-infilled RC frame which was designed only for gravity loads were simulated by using a nonlinear analysis program, RUAUMOKO 2D. The objective of this study is to understand behavior of masonry-infilled panel and to verify the correlation between the experimental and analytical responses of a masonry-infilled RC frame. It is concluded from this comparison that the strength, stiffness and local behavior of the structure can be predicted with some reliability using this macro-model.

  • PDF

Enhanced macro element for nonlinear analysis of masonry infilled RC frame structures

  • Mebarek Khelfi;Fouad Kehila
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.177-186
    • /
    • 2023
  • Reinforced concrete frames with a masonry infill panel is a structural typology frequently used worldwide. In seismic cases, the interaction between the masonry infill and the RC frames constitutes one of the most complex subjects in earthquake engineering. In this work, an enhancement of an existing numerical model is proposed to improve the estimation of lateral strength and stiffness of masonry-infilled frame structures and predict their probable failure modes. The proposed improvement is based on attributing corrective coefficients to the shear strength of each diagonal shear spring of the macro element, which simulates the masonry infill. The improved numerical model is validated by comparing the results with those of the original numerical model and with experimental results available in the literature. The enhanced macro element model can be used as a powerful, accessible tool for assessing the capacity and stiffness of masonry-infilled frame structures and predicting their probable failure modes.

Experimental research on masonry mechanics and failure under biaxial compression

  • Xin, Ren;Yao, Jitao;Zhao, Yan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.161-169
    • /
    • 2017
  • This study aimed to develop a simple and effective method to facilitate the experimental research on mechanical properties of masonry under biaxial compressive stress. A series of tests on full-scale brick masonry panels under biaxial compression have been performed in limited principal stress ratios oriented at various angles to the bed joints. Failure modes of tested panels were observed and failure features were analyzed to reveal the mechanical behavior of masonry under biaxial compression. Based on the experimental data, the failure curve in terms of two orthotropic principal stresses has been presented and the failure criterion of brick masonry in the form of the tensor polynomial has been established, which indicate that the anisotropy for masonry is closely related to the difference of applied stress as well as the orientation of bed joints. Further, compared with previous failure curves and criteria for masonry, it can be found that the relative strength of mortar and block has a considerable effect on the degree of anisotropy for masonry. The test results demonstrate the validity of the proposed experimental method for the approximation of masonry failure under biaxial compressive stress and provide valuable information used to establish experimentally based methodologies for the improvement of masonry failure criteria.

Modeling of Old Masonry Lining in Railroad Tunnels (철도터널내 조적식 라이닝의 모형화에 관한 연구)

  • Lee, J.S.;Shin, H.K.;Kim, M.I.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.3
    • /
    • pp.3-13
    • /
    • 2001
  • The behavior of the masonry lining is studied to gain basic information on how to reinforce the masonry tunnels. Apart from the previous works on the masonry structures, the multi-course masonry structure, realistic in field condition, is considered and the constitutive relationship of the masonry is, therefore, established. The design charts of the orthotropic material properties are proposed according to the stiffness ratio and the crack initiation and subsequent propagation model is also considered to model the brittle nature of the masonry. A numerical analysis on the masonry panel is investigated to verify the proposed model and future works of the masonry lining are briefly explained.

  • PDF

An Experimental Study on the Sound Insulation Characteristics of Heavyweight Walls (중량벽체의 차음특성에 관한 실험적 연구)

  • 김선우;이태강;송민정
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1078-1085
    • /
    • 1998
  • This study is carried out to investigate the characteristics of sound insulation performances for masonry walls. PC walls and ALC walls. For these purposes. 17 types of masonry walls were selected and tested in accordance with KS F 2808 at reverberation room The sound insulation performance of 8" cement block walls are graded with D-45 ∼ D-55 which are to be evaluated very favorable grade. 4" cement block walls are D-30 ∼ D-40. 1 B cement brick walls are D-40∼D-50 favorable grade. 0.5 B brick walls are D-30∼D-45. 150 mm PC wall is D-50. and ALC walls(150 mm, 200 mm) are D-30∼D-45.

  • PDF

Effect of masonry infilled panels on the seismic performance of a R/C frames

  • Aknouche, Hassan;Airouche, Abdelhalim;Bechtoula, Hakim
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.329-348
    • /
    • 2019
  • The main objective of this experimental research was to investigate the Seismic performance of reinforced concrete frames infilled with perforated clay brick masonry wall of a type commonly used in Algeria. Four one story-one bay reinforced concrete infilled frames of half scale of an existing building were tested at the National Earthquake Engineering Research Center Laboratory, CGS, Algeria. The experiments were carried out under a combined constant vertical and reversed cyclic lateral loading simulating seismic action. This experimental program was performed in order to evaluate the effect and the contribution of the infill masonry wall on the lateral stiffness, strength, ductility and failure mode of the reinforced concrete frames. Numerical models were developed and calibrated using the experimental results to match the load-drift envelope curve of the considered specimens. These models were used as a bench mark to assess the effect of normalized axial load on the seismic performance of the RC frames with and without masonry panels. The main experimental and analytical results are presented in this paper.