• Title/Summary/Keyword: masonry infill

Search Result 97, Processing Time 0.023 seconds

Influence of special plaster on the out-of-plane behavior of masonry walls

  • Donduren, Mahmut Sami;Kanit, Recep;Kalkan, Ilker;Gencel, Osman
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.769-788
    • /
    • 2016
  • The present study aimed at investigating the effect of a special plaster on the out-of-plane behavior of masonry walls. A reference specimen, plastered with conventional plaster, and a specimen plastered with a special plastered were tested under reversed cyclic lateral loading. The specimens were identical in dimensions and material properties. The special plaster contained an additive, which increased the adherence strength of the plaster to the wall. The amount of the additive in the mortar was adjusted based on the preliminary material tests. The influence of the plaster on the wall behavior was evaluated according to the initial cracking load, type of failure, energy absorption capacity (modulus of toughness), and crack pattern of the wall. Despite having limited contribution to the ductility, the special plaster increased the ultimate load capacity of the wall about 25%. The failure mode of the wall with special plaster resembled the plastic failure mechanism of a reinforced concrete slab in the formation of yielding lines along the wall. The deflection at failure and the modulus of toughness of the wall with special plaster were measured to be in order of 60% and 75% of the corresponding values of the reference wall.

Influence of exterior joint effect on the inter-story pounding interaction of structures

  • Favvata, Maria J.;Karayannis, Chris G.;Liolios, Asterios A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.113-136
    • /
    • 2009
  • The seismic induced interaction between multistory structures with unequal story heights (inter-story pounding) is studied taking into account the local response of the exterior beam-column joints. Although several parameters that influence the structural pounding have been studied sofar, the role of the joints local inelastic behaviour has not been yet investigated in the literature as key parameter for the pounding problem. Moreover, the influence of the infill panels as an additional parameter for the local damage effect of the joints on the inter-story pounding phenomenon is examined. Thirty six interaction cases between a multistory frame structure and an adjacent shorter and stiffer structure are studied for two different seismic excitations. The results are focused: (a) on the local response of the critical external column of the multistory structure that suffers the hit from the slab of the adjacent shorter structure, and (b) on the local response of the exterior beam-column joints of the multistory structure. Results of this investigation demonstrate that the possible local inelastic response of the exterior joints may be in some cases beneficial for the seismic behaviour of the critical column that suffers the impact. However, in all the examined cases the developing demands for deformation of the exterior joints are substantially increased and severe damages can be observed due to the pounding effect. The presence of the masonry infill panels has also been proved as an important parameter for the response of the exterior beam-column joints and thus for the safety of the building. Nevertheless, in all the examined inter-story pounding cases the presence of the infills was not enough for the total amelioration of the excessive demands for shear and ductility of the column that suffers the impact.

An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details (정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가)

  • Kim, Kyoung-Min;Choen, Ju-Hyun;Baek, Eun-Rim;Oh, Sang-Hoon;Hwang, Cheol-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.114-120
    • /
    • 2017
  • In this paper, the effect of the masonry infill walls on the seismic performance of the reinforced concrete(RC) frames with non-seismic details was evaluated through the static test of an masonry infilled RC frame sub-assemblage with non-seismic details of real size, and comparison with the test results of the RC frame sub-assemblage with non-seismic details. As the test results, lots of cracks occurred on the surface of the entire frame due to the compression of the masonry infilled wall, and the beam-column joint finally collapsed with the expansion of the shear crack and buckling(exposure) of the reinforcement. On the other hand, the stiffness of the shear force-story drift relationship decreased due to the wall sliding crack and column flexural cracks, and the strength finally decreased by around 60% of the maximum strength. The damage that concentrated on the upper and lower parts of columns was dispersed in the entire frame such as columns, a beam, and beam-column joints due to the wall, and the specimen was finally collapsed by expansion of the shear crack of the joint, not the shear crack of the column. Also, the stiffness of RC frame increased by 12.42 times and the yield strength by 3.63 times, while the story drift at maximum strength decreased by 0.18 times.

Seismic vulnerability of Algerian reinforced concrete houses

  • Lazzali, Farah
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.571-588
    • /
    • 2013
  • Many of the current buildings in Algeria were built in the past without any consideration to the requirements of the seismic code. Among these buildings, there are a large number of individual houses built in the 1980's by their owners. They are Reinforced Concrete (RC) frame structures with unreinforced hollow masonry infill walls. This buildings type experienced major damage in the 2003 (Algeria) earthquake, generated by deficiencies in the structural system. In the present study, special attention is placed upon examining the vulnerability of RC frame houses. Their situation and their general features are investigated. Observing their seismic behavior, structural deficiencies are identified. The seismic vulnerability of this type of buildings depends on several factors, such as; structural system, plan and vertical configuration, materials and workmanship. The results of the vulnerability assessment of a group of RC frame houses are presented. Using a method based on the European Macroseismic Scale EMS-98 definitions, presented in previous studies, distribution of damage is obtained.

Updating of FE models of an instrumented G+9 RC building using measured data from strong motion and ambient vibration survey

  • Singh, J.P.;Agarwal, Pankaj;Kumar, Ashok;Thakkar, S.K.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.325-339
    • /
    • 2013
  • A number of structural and modal parameters are derived from the strong motion records of an instrumented G + 9 storeyed RC building during Bhuj earthquake, 26 Jan. 2001 in India. Some of the extracted parameters are peak floor accelerations, storey drift and modal characteristics. Modal parameters of the building are also compared with the values obtained from ambient vibration survey of the instrumented building after the occurrence of earthquake. These parameters are further used for calibrating the accuracy of fixed-base Finite Element (FE) models considering structural and non-structural elements. Some conclusions are drawn based on theoretical and experimental results obtained from strong motion records and time history analysis of FE models. An important outcome of the study is that strong motion peak acceleration profile in two horizontal directions is close to FE model in which masonry infill walls are modeled.

Experimental study and modeling of masonry-infilled concrete frames with and without CFRP jacketing

  • Huang, Chao-Hsun;Sung, Yu-Chi;Tsai, Chi-Hsin
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.449-467
    • /
    • 2006
  • Most existing concrete structures in Taiwan are considered nonductile due to insufficient transverse reinforcement and poor detailing of frame elements. Such features are fairly typical for buildings constructed prior to 1997, at which time the local building code was revised based on ACI 318-95. Among these structures, many contain perimeter or partition walls made of concrete or clay brick for architectural purposes. These walls, though treated as non-structural components in common design practice, could affect the structural behavior of the buildings during an earthquake. To study the behavior of such structures under seismic load, experiments were conducted on concrete frames of various configurations to show the force-deformation relationships, damage patterns, and other characteristics of the frames. For further interest, similar units with columns jacketed by carbon-fiber-reinforced-polymer (CFRP) were also tested to illustrate the effectiveness of this technique in the retrofit of concrete frames.

On the fundamental period of infilled RC frame buildings

  • Asteris, Panagiotis G.;Repapis, Constantinos C.;Cavaleri, Liborio;Sarhosis, Vasilis;Athanasopoulou, Adamantia
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1175-1200
    • /
    • 2015
  • This paper investigates the fundamental period of vibration of RC buildings by means of finite element macro-modelling and modal eigenvalue analysis. As a base study, a number of 14-storey RC buildings have been considered "according to code designed" and "according to code non-designed". Several parameters have been studied including the number of spans; the span length in the direction of motion; the stiffness of the infills; the percentage openings of the infills and; the location of the soft storeys. The computed values of the fundamental period are compared against those obtained from seismic code and equations proposed by various researchers in the literature. From the analysis of the results it has been found that the span length, the stiffness of the infill wall panels and the location of the soft storeys are crucial parameters influencing the fundamental period of RC buildings.

Analysis of behavior of bare and in-filled RC frames subjected to quasi static loading

  • Sandhu, Balvir;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.381-395
    • /
    • 2020
  • Study on the inelastic response of bare and masonry infilled Reinforced Concrete (RC) frames repaired using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi- static loading is presented in the work. The hysteresis behaviour, stiffness retention, energy dissipation and damage index are the parameters employed to analyze the efficacy of FRP strengthening of bare and brick in-filled RC frames. It is observed that there is a significant improvement in load carrying capacity of brick infilled frame over bare RC frame. Also FRP strengthened brick infilled frame performs much better than FRP repaired bare frame under quasi static loading. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.

Numerical investigation of predicting the in-plane behavior of infilled frame with single diagonal strut models

  • Bouarroudj, Mohammed A.;Boudaoud, Zeineddine
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.131-146
    • /
    • 2022
  • This study highlights the accuracy of several single strut models to predict the global response of infilled reinforced concrete (R/C) frames. To this aim, six experimental tests are selected to calibrate the numerical modeling. The width of the diagonal strut is calculated using several macro models from the literature. The mechanical properties of the diagonal strut are determined by using two methods: (a) by subtracting the bare frame response from that of the infilled frame, and (b) by calculating the axial strength in the diagonal direction. A combination between the different width and the axial force models is carried out to study the effects of each parameter on global response. Non-linear pushover analyses are conducted using SAP2000. The results indicate the accuracy of the macro-modeling approach to predict the behavior of the infilled frames.

Cumulative damage in RC frame buildings - The 2017 Mexico earthquake case

  • Leonardo M. Massone;Diego Aceituno;Julian Carrillo
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.13-36
    • /
    • 2023
  • The Puebla-Morelos Earthquake (Mw 7.1) occurred in Mexico in 2017 causing 44 buildings to collapse in Mexico City. This work evaluates the non-linear response of a 6-story reinforced concrete (RC) frame prototype model with masonry infill walls on upper floors. The prototype model was designed using provisions prescribed before 1985 and was subjected to seismic excitations recorded during the earthquakes of 1985 and 2017 in different places in Mexico City. The building response was assessed through a damage index (DI) that considers low-cycle fatigue of the steel reinforcement in columns of the first floor, where the steel was modeled including buckling as was observed in cases after the 2017 earthquake. Isocurves were generated with 72 seismic records in Mexico City representing the level of iso-demand on the structure. These isocurves were compared with the location of 16 collapsed (first-floor column failure) building cases consistent with the prototype model. The isocurves for a value greater than 1 demarcate the location where fatigue failure was expected, which is consistent with the location of 2 of the 16 cases studied. However, a slight increase in axial load (5%) or decrease in column cross-section (5%) had a significant detrimental effect on the cumulated damage, increasing the intensity of the isocurves and achieving congruence with 9 of the 16 cases, and having the other 7 cases less than 2 km away. Including column special detailing (tight stirrup spacing and confined concrete) was the variable with the greatest impact to control the cumulated damage, which was consistent with the absence of severe damage in buildings built in the 70s and 80s.