• Title/Summary/Keyword: mask fabrication

Search Result 287, Processing Time 0.029 seconds

Development of Rapid Mask Fabrication Technology for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 쾌속 마스크 제작기술의 개발)

  • Lee, Seung-Pyo;Ko, Tae-Jo;Kang, Hyun-Wook;Cho, Dong-Woo;Lee, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.138-144
    • /
    • 2008
  • Micro-machining of a brittle material such as glass, silicon, etc., is important in micro fabrication. Particularly, micro-abrasive jet machining (${\mu}-AJM$) has become a useful technique for micro-machining of such materials. The ${\mu}-AJM$ process is mainly based on the erosion of a mask which protects brittle substrate against high velocity of micro-particle. Therefore, fabrication of an adequate mask is very important. Generally, for the fabrication of a mask in the ${\mu}-AJM$ process, a photomask based on the semi-conductor fabrication process was used. In this research a rapid mask fabrication technology has been developed for the ${\mu}-AJM$. By scanning the focused UV laser beam, a micro-mask pattern was fabricated directly without photolithography process and photomask. Two kinds of mask patterns were fabricated using SU-8 and photopolymer (Watershed 11110). Using fabricated mask patterns, abrasive-jet machining of Si wafer were conducted successfully.

A Study on the Mo Sputtering and HF Wet Etching for the Fabrication of Polisher (광택기 제조를 목적으로 한 스퍼터링을 이용한 Mo 증착과 불산 습식 식각 특성 연구)

  • Kim, Do-Hyoung;Lee, Ho-Deok;Kwon, Sang-Jik;Cho, Eou-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.16-19
    • /
    • 2017
  • For the economical and environmental-friendly fabrication of polisher, Mo mask layer were sputtered on glass substrate instead of Cr mask material. Mo mask layers were sputtered by pulsed-DC sputtering and Photoresist patterns were formed on Mo mask layer for different develop times and optimized. After Mo mask layer were patterned and exposed glass was wet etched by HF solution for different etching times, the remaining Mo mask was stripped by using Al etchant. Develop time of 30 sec and HF wet etching time of 3 min were selected as optimized process condition and applied to the fabrication of polisher.

  • PDF

Inductively coupled plasma etching of SnO2 as a new absorber material for EUVL binary mask

  • Lee, Su-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.124-124
    • /
    • 2010
  • Currently, extreme ultraviolet lithography (EUVL) is being investigated for next generation lithography. EUVL is one of competitive lithographic technologies for sub-22nm fabrication of nano-scale Si devices that can possibly replace the conventional photolithography used to make today's microcircuits. Among the core EUVL technologies, mask fabrication is of considerable importance due to the use of new reflective optics having a completely different configuration compared to those of conventional photolithography. Therefore, new materials and new mask fabrication process are required for high performance EUVL mask fabrication. This study investigated the etching properties of SnO2 (Tin Oxide) as a new absorber material for EUVL binary mask. The EUVL mask structure used for etching is SnO2 (absorber layer) / Ru (capping / etch stop layer) / Mo-Si multilayer (reflective layer) / Si (substrate). Since the Ru etch stop layer should not be etched, infinitely high selectivity of SnO2 layer to Ru ESL is required. To obtain infinitely high etch selectivity and very low LER (line edge roughness) values, etch parameters of gas flow ratio, top electrode power, dc self - bias voltage (Vdc), and etch time were varied in inductively coupled Cl2/Ar plasmas. For certain process window, infinitely high etch selectivity of SnO2 to Ru ESL could be obtained by optimizing the process parameters. Etch characteristics were measured by on scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Detailed mechanisms for ultra-high etch selectivity will be discussed.

  • PDF

Improvement of Ion Beam Resolution in FIB Process by Selective Beam Blocking (선택적 빔 차단을 통한 집속이온빔 가공 정밀도 향상)

  • Han, Min-Hee;Han, Jin;Kim, Tae-Gon;Min, Byung-Kwon;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.84-90
    • /
    • 2010
  • In focused ion beam (FIB) fabrication processes the ion beam intensity with Gaussian profile has a drawback for high resolution machining. In this paper, the fabrication method to modify the beam profile at substrate using silt mask is proposed to increase the machining resolution at high current. Slit mask is utilized to block the part of beam and transmit only high intensity portion. A nano manipulator is utilized to handle the silt mask. Geometrical analysis on fabricated profile through silt mask was conducted. By utilizing proposed method, improvement of machining resolution was achieved.

Fabrication of Miniaturized Shadow-mask for Local Deposition (국부증착용 마이크로 샤도우 마스크 제작)

  • 김규만;유르겐부르거
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.152-156
    • /
    • 2004
  • A new tool of surface patterning technique for general purpose lithography was developed based on shadow mask method. This paper describes the fabrication of a new type of miniaturized shadow mask. The shadow mask is fabricated by photolithography and etching of 100-mm full wafer. The fabricated shadow mask has over 388 membranes with apertures of micrometer length scale ranging from 1${\mu}{\textrm}{m}$ to 100s ${\mu}{\textrm}{m}$ made on each 2mm${\times}$2mm large low stress silicon nitride membrane. It allows micro scale patterns to be directly deposited on substrate surface through apertures of the membrane. This shadow mask method has much wider choice of deposit materials, and can be applied to wider class of surfaces including chemical functional layer, MEMS/NEMS surfaces, and biosensors.

Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography

  • Park, Jeong-Woo;Lee, Deug-Woo;Kawasegi, Noritaka;Morita, Noboru
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.8-13
    • /
    • 2006
  • Nanoscale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with a diamond tip, allowing the formation of a mask layer on the silicon substrate by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of the conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin mask layer rapidly forms on the substrate at the diamond tip-sample junction along scanning path of the tip, and simultaneously, the area uncovered with the mask layer is etched. This study demonstrates how the TNL parameters can affect the formation of the mask layer and the shape of 3-D structure, hence introducing a new process of AFM-based nanolithography in aqueous solution.

Improvement of Slit Photolithography Process Reliability for Four-Mask Fabrication process in TFT LCDs

  • Min, Tae-Yup;Qiu, Haijun;Wang, Zhangtao;Gao, Wenbao;Choi, Sang-Un;Lee, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.851-854
    • /
    • 2008
  • In order to reduce the manufacturing cost of TFT LCDs and cut down an amount facilities invested, there are many LCD panel makers contributes to convert the current Five-mask manufacturing process into the noble Four-mask fabrication process. We optimized the slit mask to improve the poor process reliability.

  • PDF

A study on the simplified fabrication structure for the multi-color OLED display

  • Baek, H.I.;Kwon, D.S.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1046-1049
    • /
    • 2006
  • We proposed a simplified fabrication structure and method which can provide separate Red (R), Green (G), Blue (B), and White (W) OLED pixels with 2 metal-mask changes in emitting layer fabrication inspired from the structure of multi-layer white OLED and carrier blocking mechanism. A red emission layer for the R and W pixel with 1st mask, and then a blue emission layer with hole blocking layer for the B and W pixel with 2nd mask, and finally a common green emission layer were deposited sequentially. We expect that this concept would be very useful to the actual fabrication of multi-color OLED display although additional optimization is needed.

  • PDF

Fiber Brags Grating Fabrication using Interferometer with Phase Mask (위상 마스크 간섭계를 이용한 광섬유 격자 제작)

  • 유계준;이호준;김병규;김선관;이원준
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.194-195
    • /
    • 2001
  • We fabricated fiber bragg gratings using interferometric method with Phase mask. The interferometer consisted of two plane-parallel mirrors and a phase mask perpendicular to mirrors. The Gratings were written using an Argon-ion laser. The experimental setup could change Bragg wavelength given by the phase mask. (omitted)

  • PDF

Polymer-waveguide Bragg-grating Devices Fabricated Using Phase-mask Lithography

  • Park, Tae-Hyun;Kim, Sung-Moon;Oh, Min-Cheol
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.401-407
    • /
    • 2019
  • Polymeric optical waveguide devices with Bragg gratings have been investigated, for implementing tunable lasers and wavelength filters used in wavelength-division-multiplexed optical communication systems. Owing to the excellent thermo-optic effect of these polymers, wavelength tuning is possible over a wide range, which is difficult to achieve using other optical materials. In this study the phase-mask technology, which has advantages over the conventional interferometeric method, was introduced to facilitate the fabrication of Bragg gratings in polymeric optical waveguide devices. An optical setup capable of fabricating multiple Bragg gratings simultaneously on a 4-inch silicon wafer was constructed, using a 442-nm laser and phase mask. During fabrication, some of the diffracted light in the phase mask was totally reflected inside the mask, which affected the quality of the Bragg grating adversely, so experiments were conducted to solve this issue. To verify grating uniformity, two types of wavelength-filtering devices were fabricated using the phase-mask lithography, and their reflection and transmission spectra were measured. From the results, we confirmed that the phase-mask method provides good uniformity, and may be applied for mass production of polymer Bragg-grating waveguide devices.