• Title/Summary/Keyword: martensite fraction

Search Result 129, Processing Time 0.029 seconds

Effect of Grain Size on the Deformation Induced Martensite Transformation and Mechanical Properties in Austenitic Stainless Steel with High Amount of Mn (고 Mn 오스테나이트계 스테인리스강의 가공유기 마르텐사이트 변태 및 기계적성질에 미치는 결정립크기의 영향)

  • Hur, T.Y.;Wang, J.P.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.271-276
    • /
    • 2011
  • The effect of grain size on the deformation induced martensite transformation and mechanical properties in austenitic stainless steel with high amount of Mn was studied. a'-martensite was formed by deformation and deformation induced martensite was formed with surface relief. With increase of grain size, volume fraction of deformation induced martensite was increased. With the increase in degree of cold rolling, hardness, and tensile strength was rapidly increased with linear relationship, while, elongation was decreased rapidly and then decreased slowly. With increase of grain size, hardness and tensile strength was rapidly increased with linear relationship, while elongation was decreased rapidly. The hardness, tensile strengths, and elongation were more strongly influenced by deformation induced martensite than the grain size.

The Effect of Harder Second Phase on Mechanical Properties of Compacted/Vermicular Graphite Cast Iron (CV 흑연주철의 기계적 성질에 미치는 경질의 제2상의 영향)

  • Park, Yoon-Woo
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.84-90
    • /
    • 1999
  • In this study, CV cast iron was reverse transformed to produce harder second phase surrounding graphite nodules, and then the microstructure and related mechanical properties of the reverse transformed CV cast iron were investigated by using optical microscopy and by carrying out hardness, tension and impact test. The formation of hard second phase surrounding graphite nodules increased the hardness in CV cast iron. The marked increase in hardness was resulted from the formation of martensite surrounding graphite nodule. It is expected from these results that the formation of martensite surrounding graphite nodule would improve the wear resistance of CV cast iron. The formation of both martensite and pearlite surrounding graphite nodule improved the tensile properties. Impact properties were decreased with increasing the volume fraction of hard second phase. However, the reduced impact properties could be recovered through phase transformation of martensite into pearlite and sorbite by tempering.

  • PDF

Effect of Reversed Austenite on the Damping Capacity of Austenitic Stainless Steel (오스테나이트계 스테인리스강의 감쇠능에 미치는 역변태 오스테나이트의 영향)

  • Kim, Young-Hwa;Sung, Ji-Hyun;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.70-75
    • /
    • 2015
  • The influence of reversed austenite on the damping capacity in austenitic stainless steel with two phase of martensite and reversed austenite was investigated. The two phases of deformation induced martensite and reversed austenite was obtained by an reverse annealing treatment at $500^{\circ}C{\sim}700^{\circ}C$ for various time after 70% cold rolling. With an increase of the reverse annealing treatment temperature and time, volume fraction of reversed austenite was rapidly increased. With an increase of volume fraction of reveresd austenite, damping capacity was rapidly increased. At same volume of reveresd austenite, damping capacity of reversed austenite obtained by reverse annealing treatment at $700^{\circ}C$ for various time was higher then reveresd austenite obtained by reverse annealing treatment at $500^{\circ}C{\sim}700^{\circ}C$ for 10min. Thus, the damping capacity was affected greatly by reversed austenite obtained by annealing treatment at $700^{\circ}C$ for various time.

Effect of Deformation Temperature, Strain Rate and Grain Size on the Tensile Properties of 304L Stainless Steel (304L stainless Steel의 인장성질에 대한 변형온도, 변형속도 및 결정입도의 영향)

  • Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.2
    • /
    • pp.20-31
    • /
    • 1990
  • This investigation has been carried out to make clear the effect of deformation temperature, strain rate and grain size on the tensile properties of 304L stainless steel. Tensile properties of the metastable austenitic 304L steel remarkably influenced by deformation temperature. Tensile strength increased with decreasing deformation temperature and the elongation showed maximum value near $40^{\circ}C$. In order to obtain the high elongation, a large amount of deformation is available in austenite before martensitic transformation and the martensite has to be induced gradually. Tensile strength and elongation increased with decreasing grain size. The temperature representing the maximum elongation shifted to low temperature and the peak width of elongation became broaden with decreasing austenite grain size. The volume fraction of strain induced martensite decreased with decreasing austenite grain size. As the strain rate increase, the temperature representing the maximum elongation value shifted to high temperature and volume fraction of strain induced martensite decreased.

  • PDF

Effect of Alloying Composition and Plastic Deformation on the Microstructure of 22Cr Micro-Duplex Stainless Steel (합금원소와 소성변형이 22Cr 마이크로 듀플렉스 스테인리스강의 미세조직에 미치는 영향)

  • Park, Jun-Young;Ahn, Yong-Sik
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.793-800
    • /
    • 2012
  • The effect of cold rolling on the microstructural evolution in 22Cr-0.2N micro-duplex stainless steel was investigated. The 22Cr-xNi-yMn-0.2N duplex stainless steel plates with various Ni and Mn contents were fabricated. The steels were vacuum induction melted and hot rolled, followed by annealing treatment at the temperature range of $1000-1100^{\circ}C$, in which both the austenite and ferrite phases were stable. The volume fraction of the ferrite phase depending on the alloy compositions of Ni and Mn increased with an increase in the annealing temperature. Grain growth in the ferrite phase occurred markedly after cold rolling followed by annealing, while fine recrystallised grains were still found in the austenite phase. A large number of martensite laths was found in the microstructure of cold rolled steels, which should be formed by strain-induced martensite from the austenite phase. The intersections of stacking faults were revealed by TEM observation. The volume fraction of the martensite phase increased with an increase of the reduction ratio by cold rolling.

Effect of TempCore Processing on Microstructure and Mechanical Properties of 700 MPa-Grade High-Strength Seismic Resistant Reinforced Steel Bars (700 MPa급 고강도 내진 철근의 미세조직과 기계적 특성에 미치는 템프코어 공정의 영향)

  • Shin, S.H.;Kim, S.K.;Lim, H.G.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.30 no.2
    • /
    • pp.91-98
    • /
    • 2021
  • The present study deals with the microstructure and mechanical properties of 700 MPa-grade high-strength seismic resistant reinforced steel bars fabricated by various TempCore process conditions. For the steel bars, in the surface region tempered martensite was formed by water cooling and subsequent self-tempering during TempCore process, while in the center region there was ferrite-pearlite or bainite microstructure. The steel bar fabricated by the highest water flow and the lowest equalizing temperature had the highest hardness in all regions due to the relatively fine microstructure of tempered martensite and bainite. In addition, the steel bar having finer microstructures as well as the high fraction of tempered martensite in the surface region showed the highest yield and tensile strengths. The presence of vanadium precipitates and the high fraction of ferrite contributed to the improvement of seismic resistance such as high tensile-to-yield strength ratio and high uniform elongation.

EFFECT OF COMPOSITION ON STRAIN-INDUCED MARTENSITE TRANSFORMATION OF FeMnNiC ALLOYS FABRICATED BY POWDER METALLURGY

  • SEUNGGYU CHOI;JUNHYUB JEON;NAMHYUK SEO;YOUNG HOON MOON;IN-JIN SHON;SEOK-JAE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.3
    • /
    • pp.1001-1004
    • /
    • 2020
  • We investigated the austenite stability and mechanical properties in FeMnNiC alloy fabricated by spark plasma sintering. The addition of Mn, Ni, and C, which are known austenite stabilizing elements, increases its stability to a stable phase existing above 910℃ in pure iron; as a result, austenitic microstructure can be observed at room temperature, depending on the amounts of Mn, Ni, and C added. Depending on austenite stability and the volume fraction of austenite at a given temperature, strain-induced martensite transformation during plastic deformation may occur. Both stability and the volume fraction of austenite can be controlled by several factors, including chemical composition, grain size, dislocation density, and so on. The present study investigated the effect of carbon addition on austenite stability in FeMnNi alloys containing different Mn and Ni contents. Microstructural features and mechanical properties were analyzed with regard to austenite stability.

Effects of Heat Treatment Temperature and Cooling Method on Microstructure and Hardness of Cu-22Sn alloy (열처리 온도 및 냉각방법이 Cu-22Sn합금의 미세조직 및 경도변화에 미치는 영향)

  • Jeong, Museob;Shin, Ari;Han, Jun Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.104-110
    • /
    • 2018
  • The effects of heat treatment time and cooling method on microstructure and mechanical property of Cu-22wt%Sn alloy were discussed. ${\alpha}+{\delta}$ mixed phase structure was obtained in air-cooled specimens after heat treatment at 775, 750, and $700^{\circ}C$ for 1 hour. On the other hand, in water-cooled specimens, ${\alpha}+{\beta}^{\prime}$ martensite mixed phase was obtained. In the case of water-cooled specimens, the hardness value decreased with decreasing heat treatment temperature because the volume fraction of ${\alpha}$ phase with low hardness value increased as the heat treatment temperature decreased. In water-cooled specimen after heat treatment at $600^{\circ}C$, ${\gamma}^{\prime}$ martensite was formed instead of ${\beta}^{\prime}$ martensite. The hardness value of ${\gamma}^{\prime}$ martensite was lower than those of ${\beta}^{\prime}$ and ${\delta}$ phases.

Precipitation Behavior of Laves Phase in 10%Cr Ferrite System Alloy (10%Cr 페라이트계 합금에서 라베스상의 석출거동에 관한 연구)

  • Kim, I.S.;Kang, C.Y.;Bae, D.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • The present study were investigated changes of precipitation behaviour of laves phase in ferrite single phase and ferrite-martensite dual phase and precipitation of laves phase under stress. Hardness changes in ferrite phase appeared two hardness peaks by precipitation of initial fine precipitator and laves phase in 3Mo-0.3Si and 3Mo-0.3Si-C specimens, respectively. Hardness changes in martensite phase of 3Mo-0.3Si-C specimen was lower in the initial stage of aging by carbide precipitation and after this, increased by re-hardening due to precipitation of laves phase. In the ferrite phase, laves phase was mainly precipitated, whereas in the martensite phase, carbide was preferentially formed during the initial stage of aging and with increasing aging time, laves phase and carbide were simultaneously precipitated by precipitation of laves phase at around carbide. In the ferrite-martensite interface, laves phase was mainly precipitated and carbide was mainly formed at boundary of lath martensite than grain boundary. Adding the stress in aging, fine precipitator of inital precipitation of laves phase precipitated in (100) of perpendicular to tensile direction and has grown to only followed<010>direction and also, volume fraction of laves phase increased. Consequently, the stress added was accelerated initial precipitation of laves phase.

  • PDF

Effects of Continuous Annealing Parameters on Microstructures in a Cold-Rolled High Strength Steel (고장력 냉연강판에서 미세조직에 대한 연속어닐링조건의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.283-292
    • /
    • 2004
  • The effects of the annealing parameters on microstructures were examined in a cold-rolled high strength steel containing 0.1% C, 0.5% Si, 1.5% Mn, and 0.04% Nb. It was impossible to avoid martensite in the microstructure even though the continuous annealing parameters were controlled. This indicates that the alloying elements such as silicon and manganese contributing to manganese equivalent($Mn_{eq}$) should be reduced to produce the ferrite-pearlite microstructure for the solid solution and precipitation hardened steel. It was found that a decrease in the rapid cooling temperature to $520^{\circ}C$ was effective to change the microstructure from ferrite-martensite to ferrite-pearlite-martensite. Typical dual-phase properties exhibiting a low yield ratio and a continuous yielding behavior were obtained when the rapid cooling temperature was in the range of $680^{\circ}C$ to $600^{\circ}C$. The critical volume fraction of martensite for the typical properties of dual-phase steel was about 11 percent.