• 제목/요약/키워드: markov chain monte carlo

검색결과 272건 처리시간 0.024초

카드뮴 반응용량 곡선에서의 기준용량 평가를 위한 베이지안 분석연구 (Bayesian Analysis of Dose-Effect Relationship of Cadmium for Benchmark Dose Evaluation)

  • 이민제;최태련;김정선;우해동
    • 응용통계연구
    • /
    • 제26권3호
    • /
    • pp.453-470
    • /
    • 2013
  • 본 논문에서는 카드뮴의 반응-용량 모형에 대한 베이지안 분석을 실시하고 기준용량에 대한 추정값들을 유도하고 비교한다. 이를 위하여 독성물질에 대한 용량반응곡선에서 많이 활용되는 두 가지 모형을 사용하고, 카드뮴의 독성연구에 관련한 기존의 문헌으로 수집된 자료에 대한 성별, 연령, 인종, study code 등과 같은 소집단 간의 개별적 형질을 반영할 수 있는 베이지안 메타분석 관점에서의 모형분석을 실시한다. 이러한 두 가지 모형에 대한 베이지안 분석을 위하여 WinBUGS를 이용한 마르코프 연쇄 몬테칼로(Markov chain Monte Carlo; MCMC) 방법을 통하여 모수를 추정하고 이에 따른 다양한 기준용량들을 계산하고 비교해보았다. 베이지안 모형 적합뿐만 아니라 편차정보기준을 통해서 주어진 자료를 더 잘 설명하는 모형을 선택하는 베이지안 모형 선택을 고려하였고, 이를 실제 자료에 적용해본다.

베이지안 방식에 의한 지구물리 역산 문제의 접근 (A Bayesian Approach to Geophysical Inverse Problems)

  • 오석훈;정승환;권병두;이희순;정호준;이덕기
    • 지구물리와물리탐사
    • /
    • 제5권4호
    • /
    • pp.262-271
    • /
    • 2002
  • 본 연구에서는 지구물리 자료의 베이지안 역산을 효과적으로 수행하는 방법에 관해 논의하였다. 베이지안 처리에서 가장 문제가 되는 사전확률분포를 구하기 위해 지구통계학적 방법을 적용하였으며, 사후확률분포의 추정을 위해 MCMC(Markov Chain Monte Carlo) 방법을 적용하였다. 쌍극자배열 전기비저항 탐사 자료의 2차원 역산을 위해 슐럼버저배열 전기비저항탐사 자료와 시추공 자료를 사전 정보로 이용하였으며, 이들 사전정보에 대해 지구통계학적 방법을 적용하여 사전확률분포를 작성하였다. 쌍극자배열 전기비저항 탐사 자료를 최대 우도함수로 하는 사후확률분포는 차원이 매우 높은 적분을 요구하므로, 이를 추정하기 위해 MCMC기술을 적용하였으며, 보다 효율적인 접근을 위해 Gibbs샘플링 방법을 이용하였다. 그 결과 비모수적 방식으로 사후확률분포를 분석함으로써 보다 신뢰성 있는 해를 구할 수 있었으며, 주변화(marginalization)된 사후확률분포를 이용하여 다양한 분석을 적용할 수 있었다.

극치강우사상을 포함한 강우빈도분석의 불확실성 분석 (Analysis of Uncertainty of Rainfall Frequency Analysis Including Extreme Rainfall Events)

  • 김상욱;이길성;박영진
    • 한국수자원학회논문집
    • /
    • 제43권4호
    • /
    • pp.337-351
    • /
    • 2010
  • 극치사상을 예측하기 위한 기존의 빈도분석 결과의 이용에 대한 많은 문제점들이 부각되고 있다. 특히, 통계적 모형을 이용하기 위해서 흔히 사용되는 점근적 모형 (asymptotic model)의 합리적인 검토 없는 외삽 (extrapolation)은 산정된 확률 값을 과대 또는 과소평가하는 문제를 일으켜, 예측결과에 대한 불확실성을 과다하게 산정함으로써 불확실성에 대한 신뢰도를 감소시키는 문제가 있다. 그러므로 본 연구에서는 국내에서 극치강우사상을 포함한 강우자료의 빈도분석에 대한 연구사례를 제공하고 점근적 모형을 사용하는 경우 발생되는 불확실성을 감소시키기 위한 방법론을 제시하였다. 이를 위하여 본 연구에서는 극치강우사상의 빈도분석을 수행하는 데 있어서 최근 들어 여러 분야에서 다양하게 적용되고 있는 Bayesian MCMC (Markov Chain Monte Carlo) 방법을 사용하였으며, 그 결과를 최우추정방법 (Maximum likelihood estimation method)과 비교하였다. 특히 강우사상의 점 빈도분석에 흔히 이용되는 확률밀도함수로 GEV (Generalized Extreme Value) 분포와 Gumbel 분포를 모두 고려하여 두 분포의 결과를 비교하였으며, 이 과정에서 각각의 산정결과 및 불확실성은 근사식을 이용한 최우추정방법과 Bayesian 방법을 이용하여 각각 비교 및 분석되었다.

MCMC 기반 파티클 필터를 이용한 지능형 자동차의 다수 전방 차량 추적 시스템 (MCMC Particle Filter based Multiple Preceeding Vehicle Tracking System for Intelligent Vehicle)

  • 최배훈;안종현;조민호;김은태
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.186-190
    • /
    • 2015
  • 지능형 자동차는 주변 환경에 대한 인식을 바탕으로 동작을 계획하고 움직인다. 따라서 정확한 환경 인식은 자율 주행 자동차의 필수 요소로 여겨진다. 차량의 주행 환경은 차량이나 보행자 같은 동적인 장애물이 다수 존재하여, 안전한 동작을 위해 이런 동적 장애물에 대한 인식이 정확하게 이루어져야 한다. 이를 위해 센서의 불확실성을 극복하는 일이 필수적이다. 본 논문에서는 레이더 센서를 이용하여 다수의 차량을 인식하고 추적하는 알고리즘을 제안한다. 제안된 추적 시스템은 몇 가지 특징을 갖는다. 레이더 센서가 차량을 계측할 때, 그 데이터가 양 모서리에서 주로 나타나는 특징을 혼합 밀도 네트워크로 표현하고, 이렇게 표현된 레이더 데이터의 확률적인 분포를 파티클 필터의 가중치 계산에 적용하여 추적 알고리즘을 수행하였다. 또한, 파티클 필터가 갖는 차원의 저주를 극복하고 시간의 흐름에 따라 그 숫자가 변화하는 다수 대상체의 상태를 예측하기 위해 가역 점프 마르코프 체인 몬테 카를로 (RJMCMC)를 통한 샘플링을 적용하였다. 제안된 알고리즘은 시뮬레이션을 통해 검증되었다.

건화물선 운임의 레버리지 효과 대한 확률 변동성 모형을 활용한 베이지안 추정 (Stochastic Volatility Models Using Bayesian Estimation for the Leverage Effect of Dry-bulk Freight Rate)

  • 김현석
    • 한국항만경제학회지
    • /
    • 제38권4호
    • /
    • pp.13-23
    • /
    • 2022
  • 본 연구는 2015년 1월부터 2020년 4월까지 건화물선 시장의 일별 운임수익률에 대한 레버리지 효과를 포착하기 위한 확률 변동성(stochastic volatility) 모형을 제안하고 운임수익률을 분석한다. 확률 변동성 분석에서 수익률과 변동성 간에 존재하는 음의 상관관계에 기초한 레버리지 효과에 대한 Bayesian Markov Chain Monte Carlo 방법을 포함하는 추정은 건화물선 운임수익률은 레버리지 효과를 포함하는 추정이 일반적인 SV 모형에 기초한 분석보다 유사한 추정치를 나타내지만 레버리지 효과에 대한 상관성 추정에서 통계적으로 유의미함을 나타낸다. 즉, 실증분석 결과는 수익률과 변동성의 상관도, 변동의 크기와 부호에 따라 상이함을 나타내며, 이는 SV 모델이 레버리지 효과를 고려하는 것이 추정치의 적합도를 향상시킴을 나타낸다. 추정모형의 레버리지 효과에 대한 통계적 유의성에 추가적으로 로그 예측력 점수를 통한 분석은 레버리지 효과를 고려하는 모형의 예측력이 향상된 추정 결과를 제시한다. 이러한 실증분석 결과는 레버리지 효과를 포함하는 확률 변동성 모형이 해양 산업의 운임 리스크 모델링에 중요함을 통계적으로 제시하는 유의미한 실증분석 결과다.

극치수문자료의 경향성 분석 개념 및 비정상성 빈도해석 (Concept of Trend Analysis of Hydrologic Extreme Variables and Nonstationary Frequency Analysis)

  • 이정주;권현한;김태웅
    • 대한토목학회논문집
    • /
    • 제30권4B호
    • /
    • pp.389-397
    • /
    • 2010
  • 본 논문에서는 극치수문자료의 경향성 분석 개념을 소개하고 이를 빈도해석과 연계시켜 해석하는 방법론을 제시하고자 Gumbel 극치분포를 기반으로, 시간변화에 의한 수문빈도 특성 변화를 모의할 수 있는 Bayesian 모형을 구성하였다. 사후분포의 매개변수는 깁스표본법에 의한 Markov Chain Monte Carlo Simulation을 통해 추정하였으며, 이를 통해 경향성을 고려한 확률강우량과 불확실성 구간을 추정하였다. 또한 경향성을 고려한 확률강우량이 현재 알려진 확률강우량을 초과할 확률을 통해 동적 위험도 해석과정을 소개하였으며, 현재의 경향성에 대해서 시간에 따라 연속으로 추정된 확률밀도함수를 비교하여 수문학적 위험도가 증가할 수 있음을 모의결과를 통해 확인하였다. 이와 더불어 단순히 경향성의 존재여부를 확인하는데 그치지 않고 사후분포를 통해서 통계적 추론을 수행함으로써 경향성에 대한 통계학적인 유의성을 정량적으로 평가할 수 있었다.

연속신념시스템의 확장모형을 이용한 주식시장의 군집행동 분석 (The extension of a continuous beliefs system and analyzing herd behavior in stock markets)

  • 박범조
    • 경제분석
    • /
    • 제17권2호
    • /
    • pp.27-55
    • /
    • 2011
  • 최근 금융시장의 변동성이 현저하게 증폭되면서 이에 대한 원인으로 금융시장의 군집 행동에 대한 이론적 연구가 활발하게 진행되고 있지만 군집행동의 시계열적 특성을 파악할 수 있는 실증적 연구는 거의 없었다. 따라서 본 연구는 연속신념시스템(continuous beliefs system)의 이론적 확장을 통해 군집행동을 시계열적으로 측정할 수 있는 군집행동 파라미터를 도출하였으며 이를 추정하기 위한 계량모형을 제안하였다. 또한 이 모형의 효율적 추정을 위해 MCMC 추정법을 적용하였다. KOSPI와 DOW 지수월별자료를 이용한 실증분석 결과에 의하면 미국보다 우리나라 주식시장의 군집행동이, 그리고 글로벌 금융위기 전보다 글로벌 금융위기 이후에 군집행동이 강하게 나타났다. 또한 글로벌 금융위기로 인해 군집행동의 변동성(표준편차)이 증가하였으며 군집행동은 수익률 변동성과는 달리 지속적인 자기상관을 유지하지 않았다. 이런 결과는 군집행동이 금융시장을 불안하게 만드는 한 원인이 될 수 있음을 나타낸다.

Markov Chain of Active Tracking in a Radar System and Its Application to Quantitative Analysis on Track Formation Range

  • Ahn, Chang-Soo;Roh, Ji-Eun;Kim, Seon-Joo;Kim, Young-Sik;Lee, Juseop
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1275-1283
    • /
    • 2015
  • Markov chains for active tracking which assigns additional track illuminations evenly between search illuminations for a radar system are presented in this article. And some quantitative analyses on track formation range are discussed by using them. Compared with track-while-search (TWS) tracking that uses scan-to-scan correlation at search illuminations for tracking of a target, active tracking has shown the maximum improvement in track formation range of about 27.6%. It is also shown that the number and detection probability of additional track beams have impact on the track formation range. For the consideration of radar resource management at the preliminary radar system design stage, the presented analysis method can be used easily without the need of Monte Carlo simulation.

런규칙을 사용한 개량된 경계선 수정계획의 설계와 Markov 연쇄의 적용

  • 박창순
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2004년도 품질경영모델을 통한 가치 창출
    • /
    • pp.413-418
    • /
    • 2004
  • The bounded adjustment is known to be more efficient than repeated adjustment when the cost is incurred for engineering process control. The procedure of the bounded adjustment is to adjust the process when the one-step predicted deviation exceeds the adjustment limit by the amount of the prediction. In this paper, two run rules are proposed and studied in order to improve the efficiency of the traditional bounded adjustment procedure. The efficiency is studied in terms of the standardized cost through Monte Carlo simulation when the procedure is operated with and without the run rules. The adjustment procedure operated with run rules turns out to be more robust for changes in the process and cost parameters. The Markov chain approach for calculating the properties of the run rules is also studied.

  • PDF

Bayesian reliability estimation of bivariate Marshal-Olkin exponential stress-strength model

  • Chandra, N.;Pandey, M.
    • International Journal of Reliability and Applications
    • /
    • 제13권1호
    • /
    • pp.37-47
    • /
    • 2012
  • In this article we attempted reliability analysis of a component under the stress-strength pattern with both classical as well as Bayesian techniques. The main focus is made to develop the theory for dealing the reliability problems in various circumstances for bivariate environmental set up in context of Bayesian paradigm. A stress-strength based model describes the life of a component which has strength (Y) and is subjected to stress(X). We develop the Bayes and moment estimators of reliability of a component for each of the three possible conditions, under the assumption that the two stresses (i.e. $X_1$ and $X_2$) on a component are dependent and follow a Bivariate exponential (BVE) of Marshall-Olkin distribution, the strength of a component (Y) following exponential distribution is independent of the stresses. The simulation study is performed with Markov Chain Monte Carlo technique via Gibbs sampler to obtain the estimates of Bayes estimators of reliability, are compared with moment estimators of reliabilities on the basis of absolute biases.

  • PDF