• Title/Summary/Keyword: marker tracking

Search Result 116, Processing Time 0.029 seconds

A Study on the Marker Tracking for Virtual Construction Simulation based Mixed-Reality (융합현실 기반의 가상건설 시뮬레이션을 위한 마커 추적 방식에 관한 연구)

  • Baek, Ji-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.660-668
    • /
    • 2018
  • The main object of this study was to find a way to operate the marker for simulating a virtual construction using a MR(mixed reality) device. The secondary object was to find a way to extract the form-data from BIM data, and to represent the virtual object by the MR device. A tiny error of scale causes large errors of length because the architectural objects are very large. The scale was affected by the way that the camera of the MR device recognizes the marker. The method of installing and operating the marker causes length errors in the virtual object in the MR system. The experimental results showed that the error factor of the Virtual object's length was 0.47%. In addition, the distance between the markers can be decided through the results of an experiment for the multi-marker tracking system. The minimum distance between markers should be more than 5 m, and the error of length was approximately 23mm. If the represented virtual object must be less than 20mm in error, the particular mark should be installed within a 5 m radius of it. Based on this research, it is expected that utilization of the MR device will increase for the application of virtual construction simulations to construction sites.

Analysis of the Metal Flow in H-Beam Rolling using Beam Blank (빔 블랑크를 이용한 H 형강 압연 거동 연구)

  • Kim, J.M.;Choi, W.N.;Park, C.S.;Kim, K.W.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.383-388
    • /
    • 2013
  • Metal flow of the beam blank during H-beam rolling was examined in order to correlate the rolling defects with the beam blank configuration. For this purpose, H-beam rolling was performed on the beam blank where stainless steel bolts were inserted as the marker at the web and flange. The positional variation of the marker was monitored at each rolling pass, and the result was compared with the 3D FEM simulation employing the point tracking function. The simulation results were reasonably agreed with the experimental within the error of 0.5~1mm on both web and flange of the H-beam. It is anticipated that the 3D FEM simulation employing the point tracking function provides the guidance information on analyzing the correlation between the rolling defects and the beam blank configuration in H-beam rolling.

Tangible AR interaction based on fingertip touch using small-sized non-square markers

  • Park, Hyungjun;Jung, Ho-Kyun;Park, Sang-Jin
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.289-297
    • /
    • 2014
  • Although big-sized markers are good for accurate marker recognition and tracking, they are easily occluded by other objects and deteriorate natural visualization and level of immersion during user interaction in AR environments. In this paper, we propose an approach to exploiting the use of rectangular markers to support tangible AR interaction based on fingertip touch using small-sized markers. It basically adjusts the length, width, and interior area of rectangular markers to make them more suitably fit to longish objects like fingers. It also utilizes convex polygons to resolve the partial occlusion of a marker and properly enlarges the pattern area of a marker while adjusting its size without deteriorating the quality of marker detection. We obtained encouraging results from users that the approach can provide better natural visualization and higher level of immersion, and be accurate and tangible enough to support a pseudo feeling of touching virtual products with human hands or fingertips during design evaluation of digital handheld products.

3D Motion Information Detection and Tracking Using Color Marker (컬러 마커를 이용한 3차원 모션 정보의 검출 및 추적)

  • 신수미;이칠우
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.596-601
    • /
    • 2001
  • 본 논문에서는 두 대의 카메라로부터 입력받은 인간의 신체와 같은 관절체의 움직임을 Color Marker의 색상 특성을 이용하여 3차원 공간 정보를 인식하는 방법에 관해 기술한다. 이 방법은 인체에 물리적인 장치를 하지 않고 단순히 영상정보만을 이용하여 3차원 정보를 구하였다. 보다 정확한 인체의 특징점을 구하기 위해 환 논문에서는 신체의 관절각에 칼라 마커를 부착하고 칼라 마커틀을 세그먼트하여 관절각의 2차원 정보를 구한 다음 스테레오 기하(Stereo Geometry)를 이용하여 3차원 정보를 계산하고 가상 공간상에서 인간의 움직임을 추적하는 방법을 제안한다. 제안하는 방법은 제스쳐 인식과 3차원 Virtual Reality 인터페이스 시스템 구성 등에 사용될 수 있다.

  • PDF

Fast Natural Feature Tracking Using Optical Flow (광류를 사용한 빠른 자연특징 추적)

  • Bae, Byung-Jo;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.345-354
    • /
    • 2010
  • Visual tracking techniques for Augmented Reality are classified as either a marker tracking approach or a natural feature tracking approach. Marker-based tracking algorithms can be efficiently implemented sufficient to work in real-time on mobile devices. On the other hand, natural feature tracking methods require a lot of computationally expensive procedures. Most previous natural feature tracking methods include heavy feature extraction and pattern matching procedures for each of the input image frame. It is difficult to implement real-time augmented reality applications including the capability of natural feature tracking on low performance devices. The required computational time cost is also in proportion to the number of patterns to be matched. To speed up the natural feature tracking process, we propose a novel fast tracking method based on optical flow. We implemented the proposed method on mobile devices to run in real-time and be appropriately used with mobile augmented reality applications. Moreover, during tracking, we keep up the total number of feature points by inserting new feature points proportional to the number of vanished feature points. Experimental results showed that the proposed method reduces the computational cost and also stabilizes the camera pose estimation results.

3D Rigid Body Tracking Algorithm Using 2D Passive Marker Image (2D 패시브마커 영상을 이용한 3차원 리지드 바디 추적 알고리즘)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.587-588
    • /
    • 2022
  • In this paper, we propose a rigid body tracking method in 3D space using 2D passive marker images from multiple motion capture cameras. First, a calibration process using a chess board is performed to obtain the internal variables of individual cameras, and in the second calibration process, the triangular structure with three markers is moved so that all cameras can observe it, and then the accumulated data for each frame is calculated. Correction and update of relative position information between cameras. After that, the three-dimensional coordinates of the three markers were restored through the process of converting the coordinate system of each camera into the 3D world coordinate system, the distance between each marker was calculated, and the difference with the actual distance was compared. As a result, an error within an average of 2mm was measured.

  • PDF

Augmented Reality System using Planar Natural Feature Detection and Its Tracking (동일 평면상의 자연 특징점 검출 및 추적을 이용한 증강현실 시스템)

  • Lee, A-Hyun;Lee, Jae-Young;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • Typically, vision-based AR systems operate on the basis of prior knowledge of the environment such as a square marker. The traditional marker-based AR system has a limitation that the marker has to be located in the sensing range. Therefore, there have been considerable research efforts for the techniques known as real-time camera tracking, in which the system attempts to add unknown 3D features to its feature map, and these then provide registration even when the reference map is out of the sensing range. In this paper, we describe a real-time camera tracking framework specifically designed to track a monocular camera in a desktop workspace. Basic idea of the proposed scheme is that a real-time camera tracking is achieved on the basis of a plane tracking algorithm. Also we suggest a method for re-detecting features to maintain registration of virtual objects. The proposed method can cope with the problem that the features cannot be tracked, when they go out of the sensing range. The main advantage of the proposed system are not only low computational cost but also convenient. It can be applicable to an augmented reality system for mobile computing environment.

Design and Realization of Stereo Vision Module For 3D Facial Expression Tracking (3차원 얼굴 표정 추적을 위한 스테레오 시각 모듈 설계 및 구현)

  • Lee, Mun-Hee;Kim, Kyong-Sok
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.533-540
    • /
    • 2006
  • In this study we propose to use a facial motion capture technique to track facial motions and expressions effectively by using the stereo vision module, which has two CMOS IMAGE SENSORS. In the proposed tracking algorithm, a center point tracking technique and correlation tracking technique, based on neural networks, were used. Experimental results show that the two tracking techniques using stereo vision motion capture are able to track general face expressions at a 95.6% and 99.6% success rate, for 15 frames and 30 frames, respectively. However, the tracking success rates(82.7%,99.1%) of the center point tracking technique was far higher than those(78.7%,92.7%) of the correlation tracking technique, when lips trembled.

Kalman Filter Baded Pose Data Fusion with Optical Traking System and Inertial Navigation System Networks for Image Guided Surgery (영상유도수술을 위한 광학추적 센서 및 관성항법 센서 네트웍의 칼만필터 기반 자세정보 융합)

  • Oh, Hyun Min;Kim, Min Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.121-126
    • /
    • 2017
  • Tracking system is essential for Image Guided Surgery(IGS). Optical Tracking System(OTS) is widely used to IGS for its high accuracy and easy usage. However, OTS doesn't work when occlusion of marker occurs. In this paper sensor data fusion with OTS and Inertial Navigation System(INS) is proposed to solve this problem. The proposed system improves the accuracy of tracking system by eliminating gaussian error of the sensor and supplements the disadvantages of OTS and IMU through sensor fusion based on Kalman filter. Also, sensor calibration method that improves the accuracy is introduced. The performed experiment verifies the effectualness of the proposed algorithm.

Learning Methods for Effective Object Tracking in 3D Storytelling Augmented Reality (3D 스토리텔링 증강현실에서 효과적인 객체 추적을 위한 학습 방법)

  • Choi, Dae han;Han, Woo ri;Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.46-50
    • /
    • 2016
  • Recently, Depending on expectancy effect and ripple effect of augmented reality, the convergence between augmented reality and culture & arts are being actively conducted. This paper proposes a learning method for effective object tracking in 3D storytelling augmented reality in cultural properties. The proposed system is based on marker-less tracking, and there are four modules that are recognition, tracking, detecting and learning module. Recognition module is composed of SURF and LSH, and then this module generates standard object information. Tracking module tracks an object using object tracking based on reliability. This information is stored in Learning module along with learned time information. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. Also, it proposes a method for robustly implementing a 3D storytelling augmented reality in cultural properties in the future.