• Title/Summary/Keyword: maritime navigation

Search Result 3,644, Processing Time 0.028 seconds

Development of Korean MF R-Mode Test-bed System for Resilient PNT in Maritime Domain (해양분야 Resilient PNT를 위한 대한민국 중파 R-Mode 테스트베드 시스템 개발)

  • Younghoon Han;Pyo-Woong Son;Jae Min Ahn;Kiyeol Seo;Tae Hyun Fang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.4
    • /
    • pp.467-473
    • /
    • 2024
  • As autonomous navigation technology advances and the importance of positional information in maritime environments increases, it is necessary to develop alternatives to the Global Navigation Satellite System (GNSS) in consideration of its vulnerabilities. Ranging Mode (R-Mode) technology is emerging as a GNSS backup system, utilizing existing maritime communication infrastructure to provide position, navigation, and timing (PNT) information through a terrestrial navigation system. This paper introduces a test-bed system developed to validate the feasibility and performance of medium frequency (MF) R-Mode technology in the context of South Korea. The MF R-Mode test-bed's transmitters are upgraded from four existing DGNSS systems, and positioning performance was evaluated based on data received in a static environment from actual signal broadcasts.

Analysis of the Data Service Structure for Korean e-Navigation Operation System (한국형 e-Navigation 운영 시스템을 위한 데이터 서비스 구조 분석)

  • Jang, Wonseok;Kim, Beomjun;Kang, Moonseog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.263-266
    • /
    • 2017
  • Numerous maritime safety technologies and systems are being developed to support safe navigation at Sea. e-Navigation is a representative system for maritime safety. It is being developed to maximize the ships safety by applying most maritime safety technologies. The e-Navigation system is being developed by the International Maritime Organization (IMO) with the aim of introducing it by 2019. South Korea has already recognized the importance of maritime safety support technology and is actively introducing e-Navigation. Korean e-Navigation is being designed to provide diverse functions for maritime safety, such as providing an optimal safe route, risk analysis, and weather information. Service modules that provide e-Navigation's each function use different types of data that are difficult to configure as a single database. In this paper, we analyze the data needed for Korean e-Navigation, the data service system structure and types that can effectively support it.

  • PDF

Search on the Marine accidents Analysis Methods

  • Quan, Vu Minh;Yang, Won-Jea
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.199-201
    • /
    • 2015
  • Nowadays, the issue of maritime safety is an extremely important issue in the maritime industry and Human' Stress is one of the biggest causes of maritime accidents. The purpose of this study was to research and compare the risk marine accidents analysis methods and find the methods which used to analysis data of the human' stress and obtained the relationship between it and the risk of maritime accidents.

  • PDF

A Study on Dynamic Safety Navigation Envelopes Considering a Ship's Position Uncertainty

  • Pyo-Woong Son;Youngki Kim;Tae Hyun Fang;Kiyeol Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.289-294
    • /
    • 2023
  • As technologies such as cameras, Laser Imaging, Detection, and Ranging (LiDAR), and Global Navigation Satellite Systems (GNSS) become more sophisticated and common, their use in autonomous driving technologies is being explored in various fields. In the maritime area, technologies related to collision avoidance between ships are being developed to evaluate and avoid the risk of collision between ships by setting various scenarios. However, the position of each vessel used in the process of developing collision avoidance technology between vessels uses data obtained through GNSS, and may include a position error of 10 m or more depending on the situation. In this paper, a study on the dynamic safety navigation range including the positional inaccuracy of the ship is conducted. By combining the concept of the protection level obtained using GNSS raw data with a conventional safe navigation range, a safer navigation range can be calculated for dynamic navigation. The calculated range is verified using data obtained while sailing in an actual sea environment.

A Study on the Improvement of Maritime Traffic Management by Introducing e-navigation (E-navigation을 활용한 해상교통관리체계 개선방안에 관한 연구)

  • An, Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.164-170
    • /
    • 2015
  • This study proposes the improvement of maritime traffic management for domestic ships and fishing vessels by introducing the e-navigation environment. This study discusses the development of present Vessel Traffic service (VTS) in a systematic aspect and a fuctional aspect. The concept and architecture of e-navigation operation system based on the General Information Center on Maritime Safety and Security (GICOMS) are proposed as a solution for the improvement of maritime traffic management in Korean coastal waters. Especially, means of data exchange between ships and ship-shore based on the Maritime Cloud and regional e-Data Center are discussed. This study will help to the implementation of the Korean e-navigation project which focuses on the safety of small ships and fishing vessels. In the future, it is needed to study for the development and operation of accident prevention system under the e-navigation environment.

Development of MF R-Mode Transmitting System for Maritime Resilient PNT in the Republic of Korea

  • Han, Younghoon;Son, Pyo-Woong;Seo, Kiyeol;Fang, Tae Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.239-244
    • /
    • 2022
  • R-Mode is terrestrial based Global Navigation Satellite System (GNSS) backup radio navigation technology which used existing maritime information service infrastructure. It has advantages on reduce the cost and reutilize the frequency resource. In this paper, we propose a method to develop a medium-frequency (MF) band R-Mode transmitting station by utilizing the currently operating Differential GNSS (DGNSS) reference station infrastructure. To this end, the considerations for co-operating the DGNSS reference station and the MF R-Mode transmitting station are analyzed. In this process, we also analyze what is necessary to configure the communication system as a navigation system for range measurement. Based on the analysis result, MF R-Mode transmitting station system is designed and architecture is proposed. The developed system is installed in the field, and the performance evaluation results is presented.

A Study of Development a Big Data-based CS Model for Maritime Traffic Assessment

  • Eui-Jong Lee;Hyun-suk Kim;Seung-yeon Kim;Young-Joong Ahn;Yun-sok Lee
    • Journal of Navigation and Port Research
    • /
    • v.48 no.5
    • /
    • pp.368-375
    • /
    • 2024
  • This research develops a big data-based CS model for maritime traffic assessment, motivated by global shipping growth, the impact of COVID-19, changes in consumer culture, and Industry 4.0 expansion in maritime sectors. Maritime traffic, crucial for global trade, demands effective management for safety and efficiency. This study aims to quantitatively and objectively evaluate maritime traffic smoothness by analyzing ship operation data. The CS model focuses on unique maritime characteristics, leveraging big data to enhance traffic management solutions and safety. The research methodology includes analyzing domestic and international trends and data to reflect maritime spatiality and continuity. The model's efficacy is tested through case studies on major port routes, comparing it with existing models to suggest improvements. This new approach provides a framework for optimizing maritime traffic routes and supports autonomous, unmanned, and smart ship operations, setting a new paradigm for maritime traffic management.