• Title/Summary/Keyword: marine software

Search Result 350, Processing Time 0.027 seconds

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

Current Status and Results of In-orbit Function, Radiometric Calibration and INR of GOCI-II (Geostationary Ocean Color Imager 2) on Geo-KOMPSAT-2B (정지궤도 해양관측위성(GOCI-II)의 궤도 성능, 복사보정, 영상기하보정 결과 및 상태)

  • Yong, Sang-Soon;Kang, Gm-Sil;Huh, Sungsik;Cha, Sung-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1235-1243
    • /
    • 2021
  • Geostationary Ocean Color Imager 2 (GOCI-II) on Geo-KOMPSAT-2 (GK2B)satellite was developed as a mission successor of GOCI on COMS which had been operated for around 10 years since launch in 2010 to observe and monitor ocean color around Korean peninsula. GOCI-II on GK2B was successfully launched in February of 2020 to continue for detection, monitoring, quantification, and prediction of short/long term changes of coastal ocean environment for marine science research and application purpose. GOCI-II had already finished IAC and IOT including early in-orbit calibration and had been handed over to NOSC (National Ocean Satellite Center) in KHOA (Korea Hydrographic and Oceanographic Agency). Radiometric calibration was periodically conducted using on-board solar calibration system in GOCI-II. The final calibrated gain and offset were applied and validated during IOT. And three video parameter sets for one day and 12 video parameter sets for a year was selected and transferred to NOSC for normal operation. Star measurement-based INR (Image Navigation and Registration) navigation filtering and landmark measurement-based image geometric correction were applied to meet the all INR requirements. The GOCI2 INR software was validated through INR IOT. In this paper, status and results of IOT, radiometric calibration and INR of GOCI-II are analysed and described.

Study of the Heeling Angle Prediction by using Simulation Data (시뮬레이션 데이터를 이용한 횡경사 각도 예측 방법 연구)

  • Youn, Dong-Hyup;Park, Chung-Hwan;Yim, Nam-Gyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.4
    • /
    • pp.231-236
    • /
    • 2019
  • As ships become bigger, faster, and diverse, transportation has increased the usage of marine vehicles. However, ship accidents are increasing. Ship accidents cause loss of life and property as well as environmental disasters. The occurrence of ship accidents causes enormous economic and environmental impacts. Notably, in the case of passenger ships, methods for preventing ship accidents are being discussed to avoid losing numerous human lives. The purpose of this study is to provide essential data for evacuation before reaching the dangerous time by predicting the time to reach the risk of capsizing based on the heeling angle of the passenger ship. Based on sinking accidents between 2012 and 2016, we set up specific scenarios and simulated the PRR1 data using commercial software MOSES V20. In the case of the linear equation, the simulation results showed a low error rate because the simulation data showed the linear graph. In the case of the quadratic equation, the error rate was low at the beginning but showed a high error rate at the subsequent angle.

Design and Implementation of a Hardware Accelerator for Marine Object Detection based on a Binary Segmentation Algorithm for Ship Safety Navigation (선박안전 운항을 위한 이진 분할 알고리즘 기반 해상 객체 검출 하드웨어 가속기 설계 및 구현)

  • Lee, Hyo-Chan;Song, Hyun-hak;Lee, Sung-ju;Jeon, Ho-seok;Kim, Hyo-Sung;Im, Tae-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1331-1340
    • /
    • 2020
  • Object detection in maritime means that the captain detects floating objects that has a risk of colliding with the ship using the computer automatically and as accurately as human eyes. In conventional ships, the presence and distance of objects are determined through radar waves. However, it cannot identify the shape and type. In contrast, with the development of AI, cameras help accurately identify obstacles on the sea route with excellent performance in detecting or recognizing objects. The computer must calculate high-volume pixels to analyze digital images. However, the CPU is specialized for sequential processing; the processing speed is very slow, and smooth service support or security is not guaranteed. Accordingly, this study developed maritime object detection software and implemented it with FPGA to accelerate the processing of large-scale computations. Additionally, the system implementation was improved through embedded boards and FPGA interface, achieving 30 times faster performance than the existing algorithm and a three-times faster entire system.

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발)

  • Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.109-119
    • /
    • 2022
  • The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.

Fluid bounding effect on FG cylindrical shell using Hankel's functions of second kind

  • Khaled Mohamed Khedher;Shahzad Ali Chattah;Mohammad Amien Khadimallah;Ikram Ahmad;Muzamal Hussain;Rana Muhammad Akram Muntazir;Mohamed Abdelaziz Salem;Ghulam Murtaza;Faisal Al-Thobiani;Muhammad Naeem Mohsin;Abeera Talib;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.565-577
    • /
    • 2024
  • Vibration investigation of fluid-filled functionally graded cylindrical shells with ring supports is studied here. Shell motion equations are framed first order shell theory due to Sander. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the Rayleigh-Ritz procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Langrange energy functional is converted into a set of three partial differential equations. A cylindrical shell is immersed in a fluid which is a non-viscous one. These shells are stiffened by rings in the tangential direction. For isotropic materials, the physical properties are same everywhere where the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. After these, ring supports are located at various positions along the axial direction round the shell circumferential direction. The influence of the ring supports is investigated at various positions. Effect of ring supports with empty and fluid-filled shell is presented using the Rayleigh - Ritz method with simply supported condition. The frequency behavior is investigated with empty and fluid-filled cylindrical shell with ring supports versus circumferential wave number and axial wave number. Also the variations have been plotted against the locations of ring supports for length-to-radius and height-to-radius ratio. Moreover, frequency pattern is found for the various position of ring supports for empty and fluid-filled cylindrical shell. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down. It is found that due to inducting the fluid term frequency result down than that of empty cylinder. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.

A Study on Relationship between Physical Elements and Tennis/Golf Elbow

  • Choi, Jungmin;Park, Jungwoo;Kim, Hyunseung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.183-196
    • /
    • 2017
  • Objective: The purpose of this research was to assess the agreement between job physical risk factor analysis by ergonomists using ergonomic methods and physical examinations made by occupational physicians on the presence of musculoskeletal disorders of the upper extremities. Background: Ergonomics is the systematic application of principles concerned with the design of devices and working conditions for enhancing human capabilities and optimizing working and living conditions. Proper ergonomic design is necessary to prevent injuries and physical and emotional stress. The major types of ergonomic injuries and incidents are cumulative trauma disorders (CTDs), acute strains, sprains, and system failures. Minimization of use of excessive force and awkward postures can help to prevent such injuries Method: Initial data were collected as part of a larger study by the University of Utah Ergonomics and Safety program field data collection teams and medical data collection teams from the Rocky Mountain Center for Occupational and Environmental Health (RMCOEH). Subjects included 173 male and female workers, 83 at Beehive Clothing (a clothing plant), 74 at Autoliv (a plant making air bags for vehicles), and 16 at Deseret Meat (a meat-processing plant). Posture and effort levels were analyzed using a software program developed at the University of Utah (Utah Ergonomic Analysis Tool). The Ergonomic Epicondylitis Model (EEM) was developed to assess the risk of epicondylitis from observable job physical factors. The model considers five job risk factors: (1) intensity of exertion, (2) forearm rotation, (3) wrist posture, (4) elbow compression, and (5) speed of work. Qualitative ratings of these physical factors were determined during video analysis. Personal variables were also investigated to study their relationship with epicondylitis. Logistic regression models were used to determine the association between risk factors and symptoms of epicondyle pain. Results: Results of this study indicate that gender, smoking status, and BMI do have an effect on the risk of epicondylitis but there is not a statistically significant relationship between EEM and epicondylitis. Conclusion: This research studied the relationship between an Ergonomic Epicondylitis Model (EEM) and the occurrence of epicondylitis. The model was not predictive for epicondylitis. However, it is clear that epicondylitis was associated with some individual risk factors such as smoking status, gender, and BMI. Based on the results, future research may discover risk factors that seem to increase the risk of epicondylitis. Application: Although this research used a combination of questionnaire, ergonomic job analysis, and medical job analysis to specifically verify risk factors related to epicondylitis, there are limitations. This research did not have a very large sample size because only 173 subjects were available for this study. Also, it was conducted in only 3 facilities, a plant making air bags for vehicles, a meat-processing plant, and a clothing plant in Utah. If working conditions in other kinds of facilities are considered, results may improve. Therefore, future research should perform analysis with additional subjects in different kinds of facilities. Repetition and duration of a task were not considered as risk factors in this research. These two factors could be associated with epicondylitis so it could be important to include these factors in future research. Psychosocial data and workplace conditions (e.g., low temperature) were also noted during data collection, and could be used to further study the prevalence of epicondylitis. Univariate analysis methods could be used for each variable of EEM. This research was performed using multivariate analysis. Therefore, it was difficult to recognize the different effect of each variable. Basically, the difference between univariate and multivariate analysis is that univariate analysis deals with one predictor variable at a time, whereas multivariate analysis deals with multiple predictor variables combined in a predetermined manner. The univariate analysis could show how each variable is associated with epicondyle pain. This may allow more appropriate weighting factors to be determined and therefore improve the performance of the EEM.

Evaluation on Spectral Analysis in ALOS-2 PALSAR-2 Stripmap-ScanSAR Interferometry (ALOS-2 Stripmap-ScanSAR 위상간섭기법에서의 스펙트럼 분석 평가)

  • Park, Seo-Woo;Jung, Seong-Woo;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.351-363
    • /
    • 2020
  • It is well known that alluvial sediment located in coastal region has been easily affected by geohazard like ground subsidence, marine or meteorological disasters which threaten invaluable lives and properties. The subsidence is a sinking of the ground due to underground material movement that mostly related to soil compaction by water extraction. Thus, continuous monitoring is essential to protect possible damage from the ground subsidence in the coastal region. Radar interferometric application has been widely used to estimate surface displacement from phase information of synthetic aperture radar (SAR). Thanks to advanced SAR technique like the Small BAseline Subset (SBAS), a time-series of surface displacement could be successfully calculated with a large amount of SAR observations (>20). Because the ALOS-2 PALSAR-2 L-band observations maintain higher coherence compared with other shorter wavelength like X- or C-band, it has been regarded as one of the best resources for Earth science. However, the number of ALOS-2 PALSAR-2 observations might be not enough for the SBAS application due to its global monitoring observation scenario. Unfortunately, the number of the ALOS-2 PALSAR-2 Stripmap images in area of our interest, Busan which located in the Southeastern Korea, is only 11 which is insufficient to apply the SBAS time-series analysis. Although it is common that the radar interferometry utilizes multiple SAR images collected from same acquisition mode, it has been reported that the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application could be possible under specific acquisition mode. In case that we can apply the Stripmap-ScanSAR interferometry with the other 18 ScanSAR observations over Busan, an enhanced time-series surface displacement with better temporal resolution could be estimated. In this study, we evaluated feasibility of the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application using Gamma software considering differences of chirp bandwidth and pulse repetition frequency (PRF) between two acquisition modes. In addition, we analyzed the interferograms with respect to spectral shift of radar carrier frequency and common band filtering. Even though it shows similar level of coherence regardless of spectral shift in the radar carrier frequency, we found periodic spectral noises in azimuth direction and significant degradation of coherence in azimuth direction after common band filtering. Therefore, the characteristics of spectral bandwidth in the range and azimuth direction should be considered cautiously for the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometry.

Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry (미강을 이용한 해양미생물 Bacillus atrophaeus LBH-18 유래의 carboxymethylcellulase 생산의 최적화)

  • Kim, Yi-Joon;Cao, Wa;Lee, Yu-Jeong;Lee, Sang-Un;Jeong, Jeong-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1295-1306
    • /
    • 2012
  • A microorganism producing carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus atrophaeus. This species was designated as B. atrophaeus LBH-18 based on its evolutionary distance and the phylogenetic tree resulting from 16S rDNA sequencing and the neighbor-joining method. The optimal conditions for rice bran (68.1 g/l), peptone (9.1 g/l), and initial pH (7.0) of the medium for cell growth was determined by Design Expert Software based on the response surface method; conditions for production of CMCase were 55.2 g/l, 6.6 g/l, and 7.1, respectively. The optimal temperature for cell growth and the production of CMCase by B. atrophaeus LBH-18 was $30^{\circ}C$. The optimal conditions of agitation speed and aeration rate for cell growth in a 7-l bioreactor were 324 rpm and 0.9 vvm, respectively, whereas those for production of CMCase were 343 rpm and 0.6 vvm, respectively. The optimal inner pressure for cell growth and production of CMCase in a 100-l bioreactor was 0.06 MPa. Maximal production of CMCase under optimal conditions in a 100-l bioreactor was 127.5 U/ml, which was 1.32 times higher than that without an inner pressure. In this study, rice bran was developed as a carbon source for industrial scale production of CMCase by B. atrophaeus LBH-18. Reduced time for the production of CMCase from 7 to 10 days to 3 days by using a bacterial strain with submerged fermentation also resulted in increased productivity of CMCase and a decrease in its production cost.