• Title/Summary/Keyword: marine heat flow

Search Result 298, Processing Time 0.021 seconds

Characteristics of Fluid Flow and Heat Transfer in a Fluidized Heat Exchanger with Circulating Solid Particles

  • Ahn, Soo-Whan;Lee, Byung-Chang;Kim, Won-Cheol;Bae, Myung-Whan;Lee, Yoon-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1175-1182
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on its long-term fouling characteristic because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the higher densities of particles had higher drag force coefficients, and the increases in heat transfer were in the order of sand, copper, steel, aluminum, and glass below Reynolds number of 5,000.

A study on the boiling heat transfer of R-113 in a horizontal tube (수평관내 R-113 냉매의 비등열전달에 관한 연구)

  • 최병철;김원녕;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.67-77
    • /
    • 1986
  • The information on the heat transfer characteristics, flow pattern and pressure drop, are very important for the desing of general heat exchanger, refrigerating system, air conditioning system and energy recovery system. In these systems, water or lubricating oil contained in working fluid affects greatly the flow and heat transfer condition and this phenomena must be considered in the practical design. An experiment has been performed for studying the flow and heat transfer characteristics of the forced convective horizontal flow of R-113 under the range of the liquid single phase state to the boiling flow state. Basic experimental results are obtained in the case that water or lubricating oil does not contaminate in the test fluid. Experimental results are as follows; (1) The local heat transfer coefficients in the nucleate boiling region and transition boiling region are almostly ten times as large as that of liquid single phase flow. (2) The measured heat transfer coefficient in the present experimental range is relatively agreed well with the predicted value from the various experimental results for the boiling flow.

  • PDF

Two-dimensional Heat Conduction and Convective Heat Transfer a Circular Tube in Cross Flow (원관 주위의 2차원 전도열전달과 국소 대류열전달)

  • Lee Euk-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.25-33
    • /
    • 2005
  • When a circular tube with uniform heat generation within the wall was placed in a cross flow, heat flows by conduction in the circumferential direction due to the asymmetric nature of the fluid flow around the perimeter of the circular tube The circumferential heat flow affects the wall temperature distribution to such an extent that. in some cases, significantly different results may be obtained for geometrically similar surfaces. In the present investigation, the effect of circumferential wall heat conduction is investigated for forced convection around circular tube in cross flow of air and water Two-dimensional temperature distribution $T_w(r,{\theta})$ is calculated through the numerical analysis. The difference between one-dimensional and two-dimensional solutions is demonstrated on the graph of local heat transfer coefficients. It is observed that the effect of working fluid is very remarkable.

Aerothermal Vortex Technologies in Aerospace Engineering

  • A. A. Khalatov;Nam, Chung-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.163-184
    • /
    • 2004
  • Vortex flow fundamentals have been investigating for about hundred years and many distinguished features had been discovered and comprehensively studied over that time. Due to unique hydrodynamic features vortex flows are now widely used in many industrial applications, including energy and power systems. combustion chambers. fuel sprayers. heat exchangers. clean-up systems. drying chambers. Up to recently aerospace engineers employed vortex flow only in combustion systems to stabilize a flame zone or in advanced heat exchangers to enhance heat transfer processes. This paper provides an overview of some recently developed aerothermal vortex technologies applied to aerospace engineering.

Fluid Flow and Heat Transfer in the Fluidized Bed Heat Exchanger (순환 유동층 열교환기내 유체유동과 열전달)

  • 김원철;배성택;이병창;안수환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal Performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The Present work showed that the flow velocity range for Possible collision between the tube wall and the particles was higher with heavier density solid particles. in audition. the solid particle periodically hitting the tube wall broke the thermal boundary laver. and increased the rate of heat transfer.

Study on Characteristics of Flow Boiling Heat Transfer in Multi channels (수평 다채널 관에서의 유동 비등 열전달 특성에 관한 연구)

  • CHOI, Yong-Seok;LIM, Tae-Woo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1310-1317
    • /
    • 2015
  • Two-phase flow boiling heat transfer in micro-channels was experimently investigated. The test section consisted of 15 rectangular micro-channels with a depth of 0.45mm, width of 0.20mm. The experiments were performed for heat fluxes ranging from 5.6 to 46.1kW/m2 and mass fluxes from 150 to 450kg/m2s using FC-72 as the working fluid. According to the results, at the low heat flux region, heat transfer coefficient strongly depends on the heat flux, while heat transfer coefficient at the high heat flux region was independent on the heat flux. Four correlations were used to predict the heat transfer coefficient. The measured heat transfer coefficient was compared with four correlations. It was found that Kaew-On and Wongwises's correlation well predicted the measured data, within the MAE of 40.3%.

A Study on the Effect of Fin Pitch of Offsets Strip Fin on Heat Transfer of High Prandtl Fluid (옵셋 스트립 휜의 휜피치가 고 Prandtl 유체 열전달 특성에 미치는 영향)

  • 강덕종;양대일;전승환;정형호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.83-89
    • /
    • 2002
  • In the present study, heat transfer characteristics of oil flow over offset strip fins were predicted by the numerical methods. Oil flow in the plate-fin passage was idealized by 2 dimensions. The flow patterns and heat transfer characteristics were predicted in details. Numerical results shows that the average convective heat transfer coefficients are almost independent on the raws of fins and affected by fin pitches. At the rear face of fin, there exists minimum point of heat transfer coefficients where stream are separated from the fin surfaces. The convective heat transfer coefficients were effected by separation bubbies which appeared at the wake region of offset strip fins.

Melting Heat Transfer Characteristics of Plural Phase Change Microcapsules Slurry Having Different Diameters

  • Kim, Myoung-Jun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1225-1238
    • /
    • 2004
  • The present study has been performed for obtaining the melting heat transfer enhancement characteristics of water mixture slurries of plural microcapsules having different diameters encapsulated with solid-liquid phase change material(PCM) flowing in a pipe heated under a constant wall heat flux condition. In the turbulent flow region, the friction factor of the present PCM slurry was to be lower than that of only water flow due to the drag reducing effect of the PCM slurry. The heat transfer coefficient of the PCM slurry flow in the pipe was increased by both effects of latent heat involved in phase change process and microconvection around plural microcapsules with different diameters. The experimental results revealed that the average heat transfer coefficient of the PCM slurry flow was about 2~2.8 times greater than that of a single phase of water.

Heat transfer characteristic and flow pattern investigation in micro-channels during two-phase flow boiling (이상 유동 비등 시 마이크로 채널에서의 열전달 특성과 유동양식 조사)

  • Choi, Yong-Seok;Lim, Tae-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.696-701
    • /
    • 2015
  • Two-phase flow boiling experiments were conducted in 15 micro-channels with a depth of 0.2 mm, width of 0.45 mm, and length of 60 mm. FC-72 was used as the working fluid, and the mass fluxes ranged from 200 to $400kg/m^2s$. Tests were performed over a heat flux range of $5-40kW/m^2$ and vapor quality range of 0.1-0.9. The heat transfer coefficient sharply decreased at a lower heat flux and then was kept approximately constant as the heat flux is increased. Based on the measured heat transfer data, the flow pattern was simply classified into bubbly, slug, churn, and wavy/annular flows using the existing method. In addition, these classified results were compared to the transition criterion to wavy/annular regime. However, it was found that the existing transition criterion did not satisfactorily predict the transition criterion to annular regime for the present data.

Heat transfer of Mixed convection in rectangular space with constant heat flux (일정 열유속의 열원을 갖는 사각공간의 혼합대류 열전달)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.552-558
    • /
    • 1999
  • Ventilation of the marine engine room is very important for the health of the workers as well as the normal operation of machines. To find proper ventilation conditions of this engine room numerical simulation with a standard k-$\varepsilon$model was carried out. In the present study the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with a downward angle depresses recirculation flow causing a strong stream in the wider space of the room Ventilation and removal of the released heat are promoted with this pattern, There is a possibility of local extreme heating at the upper surface of the engine when supply and exhaust ports of air are in bilateral symmetry.

  • PDF