• Title/Summary/Keyword: marine flooding

Search Result 63, Processing Time 0.03 seconds

Preliminary tests of a damaged ship for CFD validation

  • Lee, Sung-Kyun;You, Ji-Myoung;Lee, Hyun-Ho;Lim, Tae-Gu;Rhee, Shin-Hyung;Rhee, Key-Pyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.172-181
    • /
    • 2012
  • One of the most critical issues in naval architecture these days is the operational safety. Among many factors to be considered for higher safety level requirements, the hull stability in intact and damaged conditions is the first to ensure for both commercial and military vessels. Unlike the intact stability cases, the assessment of the damaged ship stability is very complicated physical phenomena. Therefore it is widely acknowledged that computational fluid dynamics (CFD) methods are one of most feasible approaches. In order to develop better CFD methods for damaged ship stability assessment, it is essential to perform well-designed model tests and to build a database for CFD validation. In the present study, free roll decay tests in calm water with both intact and damaged ships were performed and six degree-of-freedom (6DOF) motion responses of intact ship in regular waves were measured. Through the free roll decay tests, the effects of the flooding water on the roll decay motion of a ship were investigated. Through the model tests in regular waves, the database that provides 6DOF motion responses of intact ship was established.

Adaptive Sea Level Prediction Method Using Measured Data (관측치를 이용한 적응적 조위 예측 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.891-898
    • /
    • 2017
  • Climate changes consistently cause coastal accidents such as coastal flooding, so the studies on monitoring the marine environments are progressing to prevent and reduce the damage from coastal accidents. In this paper, we propose a new method to estimate the sea level which can be applied to the tidal sensors to monitor the variation of sea level. Existing sea level models are very complicated and need a lot of tidal data, so they are not proper for tidal sensors. On the other hand, the proposed algorithm is very simple but precise since we use the measured data from the sensor to estimate the sea level value in short period such as one or two hours. It is shown by experimental results that the proposed method is simple but predicts the sea level accurately.

Residual ultimate strength of a very large crude carrier considering probabilistic damage extents

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.14-26
    • /
    • 2014
  • This paper provides the prediction of ultimate longitudinal strengths of the hull girders of a very large crude carrier considering probabilistic damage extent due to collision and grounding accidents based on IMO Guidelines (2003). The probabilistic density functions of damage extent are expressed as a function of non-dimensional damage variables. The accumulated probabilistic levels of 10%, 30%, 50%, and 70% are taken into account for the estimation of damage extent. The ultimate strengths have been calculated using the in-house software called Ultimate Moment Analysis of Damaged Ships which is based on the progressive collapse method, with a new convergence criterion of force vector equilibrium. Damage indices are provided for several probable heeling angles from $0^{\circ}$ (sagging) to $180^{\circ}$ (hogging) due to collision- and grounding-induced structural failures and consequent flooding of compartments. This paper proves from the residual strength analyses that the second moment of area of a damage section can be a reliable index for the estimation of the residual ultimate strength. A simple polynomial formula is also proposed based on minimum residual ultimate strengths.

A Study on the Safety Operational Envelope of a Submarine in Jamming (잠수함의 제어판 재밍에 대한 안전운항영역 설정)

  • Park, Jong-Yong;Kim, Nakwan;Shin, Yong-Ku
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.301-311
    • /
    • 2017
  • Safety operational envelope (SOE) is the area which guarantees the safety of a submarine from the accident such as jamming and flooding. The maximum safe depth is set to prevent the damage to the hull from increasing water pressure with depth. A minimum safety depth is set to prevent a submarine from the exposure above the free surface and collision against surface ship. The prediction method for the SOE in the design phase is needed to operate the submarine safely. In this paper, the modeling and calculation methods of the SOE are introduced. Main ballast tank blowing modeling and propeller force modeling are conducted to simulate the accidents and the recovery process. The SOEs are established based on the crash stop and emergency rising maneuver simulation. From the simulation results, it can be known that the emergency rising maneuver is more effective recovery action than the crash stop.

Ship Motion-Based Prediction of Damage Locations Using Bidirectional Long Short-Term Memory

  • Son, Hye-young;Kim, Gi-yong;Kang, Hee-jin;Choi, Jin;Lee, Dong-kon;Shin, Sung-chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.295-302
    • /
    • 2022
  • The initial response to a marine accident can play a key role to minimize the accident. Therefore, various decision support systems have been developed using sensors, simulations, and active response equipment. In this study, we developed an algorithm to predict damage locations using ship motion data with bidirectional long short-term memory (BiLSTM), a type of recurrent neural network. To reflect the low frequency ship motion characteristics, 200 time-series data collected for 100 s were considered as input values. Heave, roll, and pitch were used as features for the prediction model. The F1-score of the BiLSTM model was 0.92; this was an improvement over the F1-score of 0.90 of a prior model. Furthermore, 53 of 75 locations of damage had an F1-score above 0.90. The model predicted the damage location with high accuracy, allowing for a quick initial response even if the ship did not have flood sensors. The model can be used as input data with high accuracy for a real-time progressive flooding simulator on board.

A Seismic Study on Muddy Sediment Deposits in the Northern Shelf of the East China Sea (동중국해 북부대륙붕에 발달한 니질 퇴적체의 탄성파 연구)

  • Choi Dong-Lim;Lee Tae-Hee;Yoo Hae-Soo;Lim Dhong-Il;Huh Sik;Kim Kwang-Hee
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.633-642
    • /
    • 2005
  • We present the sedimentary sequence and distribution pattern of the late Holocene muddy deposits in the northern East China Sea shelf using the high-resolution 'Chirp' profiles. The seismic sedimentary sequence overlying acoustic basement (basal reflector-B) can be divided into two depositional units (Unit 1 and 2) bounded by erosional bounding surface (mid reflector-M). The lower Unit 1 above basal reflector-H is characterized by the acoustically parallel to subparallel reflections and channel-fill facies. The upper Unit 2, up to 7 m in thickness, shows seismically semi-transparent seismic facies and lenticular body form. On the base of sequence stratigraphic concept, these two sediment units have developed during transgression and highstand period, respectively, since the last sea-level lowstand. The transgressive systems tract (Unit 1) lie directly on the sequence boundary (reflector B) that have farmed during the last glacial maximum. The transgressive systems tract in this study consists mostly of complex of delta, fluvial, and tidal deposits within the incised valley estuary system. The maximum flooding surface (reflector M) corresponding to the top surface of transgressive systems tract is obviously characterized by erosional depression. The highstand systems tract (Unit 2) above maximum flooding surface is made up of the mud patch filled with the erosional depression. The high-stand mud deposits showing a circle shape just like a typhoon symbol locates about 140 km off the south of Cheju Island with water depth of $60\~90m$. Coverage area and total sediment volume of the mud deposits are about $3,200km^2$ and $10.7\times10^9\;m^3$, respectively. The origin of the mud patch is interpreted as a result of accumulating suspended sediments derived from the paleo-Yellow and/or Yangtze Rivers. The circular distribution pattern of the mud patch appears to be largely controlled by the presence of cyclonic eddy in the northern East China Sea.

Volcanic Processes of Dangsanbong Volcano, Cheju Island (제주도 당산봉 화산의 화산과정)

  • 황상구
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Dangsanbong volcano, which is located on the coast of the western promontory of Cheju Island, occurs in such a regular pattern on the sequences which represent an excellent example of an eruptive cycle. The volcano comprises a horseshoe-shaped tuff cone and a younger nested cinder cone on the crater floor, which are overlain by a lava cap at the top of the cinder cone, and wide lava plateau in the moat between two cones and in the northern part. The volcanic sequences suggest volcanic processes that start with Surtseyan eruption, progress through Strombolian eruption and end with Hawaiian eruption, and then are followed by rock fall from sea cliff of the tuff cone and by air fall from another crater. It is thought that the eruptive environments of the tuff cone could be mainly emergent because the present cone is located on the coast, and standing body of sea water could play a great role. It is thought that the now emergent part of the tuff cone was costructed subaerially because there is no evidence of marine reworking. The emergent tuff cone is characterized by distinctive steam-explosivity that results primarily from a bulk interaction between rapidly ascending magma and external water. The sea water gets into the vent by flooding accross or through the top or breach of northern tephra cone. Dangsanbong tuff cone was constructed from Surtseyan eruption which went into with tephra finger jetting explosion in the early stage, late interspersed with continuous upruch activities, and from ultra-Surtseyan jetting explosions producting base surges in the last. When the enclosure of the vent by a long-lived tephra barrier would prevent the flooding and thus allow the vent to dry out, the phreatomagmatic activities ceased to transmit into magmatic activity of Strombolian eruption, which constructed a cinder cone on the crater floor of the tuff cone Strombolian eruption ceased when magma in the conduit gradually became depleted in gas. In the Dangsanbong volcano, the last magmatic activity was Hawaiian eruption which went into with foundation and effusion of basalt lava.

  • PDF

Adaptive Sea Level Prediction Method Based on Harmonic Analysis (조화분석에 기반한 적응적 조위 예측 방법)

  • Park, Sanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.276-283
    • /
    • 2018
  • Climate changes consistently cause coastal accidents such as coastal flooding, so the studies on monitoring the marine environments are progressing to prevent and reduce the damage from coastal accidents. In this paper, we propose a new method to predict the sea level which can be applied to coastal monitoring systems to observe the variation of sea level and warn about the dangers. Existing sea level models are very complicated and need a lot of tidal data, so they are not proper for real-time prediction systems. On the other hand, the proposed algorithm is very simple but precise in short period such as one or two hours since we use the measured data from the sensor. The proposed method uses Kalman filter algorithm for harmonic analysis and double exponential smoothing for additional error correction. It is shown by experimental results that the proposed method is simple but predicts the sea level accurately.

Climate Change Vulnerability Assessment in Rural Areas - Case study in Seocheon - (농촌지역 기후변화 취약성 평가에 관한 연구 - 서천군을 대상으로 -)

  • Lee, Gyeongjin;Cha, Jungwoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.4
    • /
    • pp.145-155
    • /
    • 2014
  • Since greenhouse gas emissions increase continuously, the authorities have needed climate change countermeasure for adapting the acceleration of climate change damages. According to "Framework Act on Low Carbon, Green Growth", Korean local governments should have established the implementation plan of climate change adaptation. These guidelines which is the implementation plan of climate change adaptation should be established countermeasure in 7 fields such as Health, Digester/Catastrophe, Agriculture, Forest, Ecosystem, Water Management and Marine/Fisheries. Basically the Korean local governments expose vulnerable financial condition, therefore the authorities might be assessed the vulnerability by local regions and fields, in order to establish an efficient implementation plan of climate change adaptation. Based on this concepts, this research used 3 methods which are LCCGIS, questionnaire survey analysis and analysis of existing data for the multiphasic vulnerable assessment. This study was verified the correlation among 7 elements of climate change vulnerability by 3 analysis methods, in order to respond climate change vulnerability in rural areas, Seocheon-gun. If the regions were evaluated as a vulnerable area by two or more evaluation methods in the results of 3 methods' comparison and evaluation, those areas were selected by vulnerable area. As a result, the vulnerable area of heavy rain and flood was Janghang-eup and Maseo-myeon, the vulnerable area of typhoon was Janghang-eup, Masan-myeon and Seo-myeon. 3 regions (i.e. Janghang-eup, Biin-myeon, Seo-myeon) were vulnerable to coastal flooding, moreover Masan-myeon, Pangyo-myeon and Biin-myeon exposed to vulnerability of landslide. In addition, Pangyo-myeon, Biin-myeon and Masan-myeon was evaluated vulnerable to forest fire, as well as the 3 sites; Masan-myeon, Masan-myeon and Pangyo-myeon was identified vulnerable to ecosystem. Lastly, 3 regions (i.e. Janghang-eup, Masan-myeon and Masan-myeon) showed vulnerable to flood control, additionally Janghang-eup and Seo-myeon was vulnerable to water supply. However, all region was evaluated vulnerable to water quality separately. In a nutshell this paper aims at deriving regions which expose climate change vulnerabilities by multiphasic vulnerable assessment of climate change, and comparing-evaluating the assessments.

Characteristics of Sea Exchange in Gwangyang Bay and Jinju Bay considering Freshwater from Rivers (하천유출수를 고려한 광양만과 진주만의 해수교환 특성)

  • Hong, Doung;Kim, Jongkyu;Kwak, Inn-Sil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.201-211
    • /
    • 2022
  • At the center of the Noryang waterway, the Gwangyang bay area (including the Yeosu Strait) is located at the west, and the Jinju bay area (including Gangjin bay and Sacheon bay) is located at the east. Freshwater from several rivers is flowing into the study area. In particula,r the event of flood, great quantities freshwater flow from Seomjingang (Seomjin river) into the Gwangyang bay area and from Gahwacheon (discharge from Namgang Dam) into the Jinju bay. The Gwangyang and Jinju bay are connected to the Noryang waterway. In addition, freshwater from Seomjingang and Gahwacheon also affect through the Noryang waterway. In this study, we elucidated the characteristics of the tidal exchange rate and residence time for dry season and flood season on 50 frequency, considering freshwater from 51 rivers, including Seomjingang and Gahwacheon, using a particle tracking method. We conducted additional experiments to determine the effect of freshwater from Seomjingang and Gahwacheon during flooding. In both the dry season and flood season, the result showed that the particles released from the Gwangyang bay moved to the Jinju bay through the Noryang waterway. However, comparatively small amount of particles moved from the Jinju bay to the Gwangyang bay. Each experimental case, the sea exchange rate was 44.40~67.21% in the Gwangyang bay and 50.37~73.10% in the Jinju bay, and the average residence time was 7.07~15.36days in the Gwangyang bay and 6.45~12.75days in the Jinju bay. Consequently the sea exchange rate increased and the residence time decreased during flooding. A calculation of cross-section water flux over 30 days for 7 internal and 5 external areas, indicated that the main essential flow direction of the water flux was the river outflow water from Seomjingang flow through the Yeosu strait to the outer sea and from Gahwacheon flow through Sacheon bay, Jinju bay and the Daebang waterway to the outer sea.