• Title/Summary/Keyword: marine biotechnology

Search Result 1,889, Processing Time 0.044 seconds

Cell proliferation effect of brown marine algae extracts on Mouse Fibroblast (해조류 추출물이 섬유아세포의 증식에 미치는 영향)

  • Ko, Ju-Young;Lee, Ji-Hyeok;Kim, Hyun-Soo;Kim, Hyung-Ho;Jeon, You-Jin
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • We examined cell regeneration efficiency of brown marine algae living in Jeju coast for search of a novel therapeutic device with cutaneous wound healing materials. The five algae were collected and compared with epidermal growth factor (EGF) as a positive control in the assays of cell proliferation and cell migration of NIH3T3 fibroblast cells. Among the 80% methanol extracts of these brown algae, the two algal extracts from Ishige foliacea and Colpomenia bullosa showed the proliferative effects of the cells similar to the effect of EGF. Besides it was found that Colpomenia bullosa extract significantly enhanced cell migration of NIH3T3 cell. In the study, therefore, we confirmed that the Colpomenia bullosa extract improved proliferation of NIH3T3 cell and a potential candidate for cultaneous wound healing.

Bioactive Marine Natural Products in Drug Development

  • Kim, Se-Kwon;Ravichandran, Y. Dominic;Kim, Moon-Moo;Jung, Won-Kyo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.209-223
    • /
    • 2007
  • Nature is one of the most important sources of pharmacologically active compounds in the search for drugs against life threatening diseases. Even though plants and terrestrial microorganisms have played as an important source for the new drug candidates from nature, marine organisms such as tunicates, sponges, soft corals, sea horses, sea snakes, marine mollusks, seaweeds, nudibranches, sea slugs and marine microorganisms are increasingly attracting attention in recent years. Marine organisms also have the potential to develop into future drugs against important diseases, such as cancer, a range of bacterial and viral diseases, malaria, and inflammations. Even though the mechanism of action in the molecular level of most metabolites is still unclear, the mechanisms by which they interfere with the pathogenesis of a wide range of diseases have been reported. The knowledge of this is one of the key factors necessary to develop bioactive compounds into medicines. This is due to their structurally unique and pharmacologically active compounds. The potential pharmaceutical, medicinal and research applications of some of these compounds are discussed in hundreds of scientific papers, and are reviewed here.

  • PDF

Isolation and Purification of Anticoagulant Polysaccharide Compound from Fermented Edible Brown Seaweed, Laminaria ochotensis

  • Nikapitiya Chamilani;Zoysa Mahanama De;Ekanayake Prashani Mudika;Park Ho-Jin;Lee Je-Hee
    • Journal of Aquaculture
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2006
  • Anticoagulant activities of a fermented edible brown alga, Laminaria ochotensis was investigated. L. ochotensis was fermented with 15% sugar (w/v) at $25^{\circ}C$ for 10 weeks. Anticoagulant activity was measured from the supernatant of algal mixture at biweekly intervals up to $10^{th}$ week by activated partial thromboplastin (APTT), prothrombin time (PT) and thrombin time (TT) assay using citrated human plasma. Sample having high APTT activity $(6^{th}\;week)$ was filtered, ethanol precipitated and freeze-dried. The polysaccharide compound having anticoagulant activity was purified by DEAE ion exchange chromatography followed by Sepharose-4B gel filtration chromatography. Anticoagulant activity, polysaccharide concentration, and heparin like activity were determined for the collected fractions by APTT, $phenol-H_2SO_4$, and glycosaminoglycan assay, respectively. The anticoagulant activity assay showed that the activity was increased up to $6^{th}$ week, and decreased thereafter. The concentration of our purified compound was $31.0{\mu}g/ml$ and showed higher APTT activity than commercial heparin. At the same concentration of $31.0{\mu}g/ml$, the heparin showed 186.5 sec activity while our purified compound showed an activity of 386 sec. Single spot on agarose gel electrophoresis showed that the compound was purified and polyacrylamide gel electrophoresis (PAGE) results revealed that the molecular mass of the purified polysaccharide compound was between 60 and 500 kDa. Therapeutic interest of the algal polysaccharide as an anticoagulant has recently been in highlighted. This purified anticoagulant compound from fermented L. ochotensis can be used as a model for anticoagulant agent or could be developed as an anticoagulant agent. This study can be extended to identify the structure and chemical composition of the purified polysaccharide, and to establish a relationship between structure and the function of the identified anticoagulant compounds.

Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M

  • Cho, Sang-Hyeok;Jeong, Yujin;Lee, Eunju;Ko, So-Ra;Ahn, Chi-Yong;Oh, Hee-Mock;Cho, Byung-Kwan;Cho, Suhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.601-609
    • /
    • 2021
  • Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pan-genome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species. The presence of virulence genes, especially the plant-algae cell wall degrading genes, revealed that Erythrobacter sp. 3-20A1M is a potential marine plant-algae scavenger.

Isolation and characterization of anaerobic microbes from marine environments in Korea (한반도 주변 해역으로부터 혐기성 미생물의 분리 및 분리 미생물의 특성 분석)

  • Kim, Wonduck;Lee, Jung-Hyun;Kwon, Kae Kyoung
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.183-191
    • /
    • 2016
  • Marine bacteria have represented unique physiologies and products which are not discovered from terrestrial organisms. There has been great interest to utilize and develop marine bacteria in many industrial sectors. Recently, we isolated and characterized anaerobic bacteria from various marine environments in Korea to search organic acids fermenting strains. From our enrichment performed under anaerobic condition, 65 strains were isolated and identified by the 16S rRNA gene sequence analysis. Among them, eleven strains were selected for phylogenetical and biochemical analysis. All tested strains were affiliated with Class Clostridia except one with Class Bacteroidia. Most of strains produce acetate (6 strains) with butyrate (2 strains) and/or formate (4 strains). Strain MCWD5 transformed 40% of glucose to extracellular polymeric substances. These results indicate that many novel anaerobic microorganisms which have great potential in commercial application are distributed in the marine environments of Korean Peninsula.

Immune Enhancement Effects of Codium fragile Anionic Macromolecules Combined with Red Ginseng Extract in Immune-Suppressed Mice

  • Kim, Ji Eun;Monmai, Chaiwat;Rod-in, Weerawan;Jang, A-yeong;You, Sang-Guan;Lee, Sang-min;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1361-1368
    • /
    • 2019
  • Codium fragile is an edible seaweed in Asian countries that has been used as a thrombolytic, anticoagulant, antioxidant, anti-inflammatory, and immune-stimulatory agent. Ginseng has also been known to maintain immune homeostasis and to regulate the immune system via enhancing resistance to diseases and microorganisms. In this study, anionic macromolecules extracted from C. fragile (CFAM) were orally administered with red ginseng extract (100 mg/kg body weight) to cyclophosphamide-induced immunosuppressed male BALB/c mice to investigate the immune-enhancing cooperative effect of Codium fragile and red ginseng. Our results showed that supplementing CFAM with red ginseng extract significantly increased spleen index, T- and B-cell proliferation, NK cell activity, and splenic lymphocyte immune-associated gene expression compared to those with red ginseng alone, even though a high concentration of CFAM with red ginseng decreased immune biomarkers. These results suggest that CFAM can be used as a co-stimulant to enhance health and immunity in immunosuppressed conditions.

Suberitenone B: A Novel Inhibitor of Cholesteryl Ester Transfer Protein (CETP) with an Unprecedented Skeletal Class from the Antarctic Sponge Suberites sp.

  • Shin, Jongheon;Seo, Youngwan;Rho, Jung-Rae;Baek, Eunjoo;Kwon, Byoung-Mog;Jeong, Tae-Sook;Bok, Song-Hae
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.64-64
    • /
    • 1995
  • Cholesteryl Ester Transfer Protein (CETP) mediates the transfer of cholesterol ester and triglyceride between high-density lipoprotein (HDL) and other low-density lipoproteins, therefore, it might influence HDL levels. The levels of HDL is closely related to the atherogenic diseases in human and there were several reports that the trasgenic mice expressing CETP had much worse atherosclerosis than non-expressing control one. Therefore, selective inhibitors of CETP have the potential to be used as antiatherosclerotic agents. Continued screening for potent inhibitors of CETP led to the isolation of Suberitenone B from marine sponge. Suberitenone B, sesterterpenoids of a new skeletal class have been isolated from the sponge Suberites sp. collected from King George Island the Antartic. The structure of the metabolite has been determined by NMR experiments and chemical methods.

  • PDF