• Title/Summary/Keyword: marine Safety

Search Result 4,539, Processing Time 0.026 seconds

Effects of Safety Awareness and Self-Efficacy on Safety Practice with Elementary School Studentsts: Focusing on the Changwon City (안전의식, 자기효능감이 초등학생들의 안전실천에 미치는 영향: 경남 창원시를 중심으로)

  • PARK, Sin-Young;EO, Yong-Sook
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.2
    • /
    • pp.515-524
    • /
    • 2016
  • The purpose of this study was to identify how safety awareness and self-efficacy affect the safety practice with elementary school students. The participants were 369 elementary school students(4~6th grade) in Changwon city. Data were collected using self-report questionnaires and analyzed with the SPSSWIN 22.0 program. Analysis methods were t-test, one way ANOVA, Scheffe test, Pearsons correlation coefficient and multiple linear regression. As a results, safety awareness was an average 2.97 point which was moderate levels and self-efficacy was on over intermediate level of an average 3.73 point. Safety practice was an 3.00 point. Safety practice had statistically significant difference according to grade, number of family, mother's education, character and school life attitude. Safety awareness(r=.41, p<.001) and self-efficacy(r=.39, p<.001) was significant correlation with safety practice. Fire safety(${\beta}=.22$, t=3.56) and self-efficacy(${\beta}=.27$, t=5.32) were significantly influenced safety practice and explaining 24.0% of the variance. From the results of this study, I proposed the education programs to increase safety practice in elementary school students that emphasizes self-efficacy and safety awareness.

Experimental Study on Flow Direction of Fire Smoke in DC Electric Fields (DC 전기장 내에서 발생하는 화재연기 진행 방향에 대한 실험적 연구)

  • Park, Juwon;Kim, Youngmin;Seong, Seung Hun;Park, Sanghwan;Kim, Ji Hwan;Chung, Yongho;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.675-682
    • /
    • 2021
  • Fire accidents on land and at sea can cause serious casualties; specifically, owing to the nature of marine plants and ships, the mortality rate at sea from suffocation in confined spaces is significantly higher than that on land. To prevent such cases of asphyxiation, it is essential to install ventilation fans that can outwardly direct these toxic gases from fires; however, considering the scale of marine fires, the installation of large ventilation fans is not easy owing to the nature of marine structures. Therefore, in this study, we developed a new concept for fire safety technology to control toxic gases generated by fires from applied direct current (DC) electric fields. In the event of a fire, most flames contain large numbers of positive and negative charges from chemi-ionization, which generates an "ionic wind" by Lorentz forces through the applied electric fields. Using these ionic winds, an experimental study was performed to artificially control the fire smoke caused by burning paper and styrofoam, which are commonly used as insulation materials in general buildings and ships. The experiments showed that a fire smoke could be artificially controlled by applying a DC voltage in excess of ±5 kV and that relatively effective control was possible by applying a negative voltage rather than a positive voltage.

An Analysis of Causes of Marine Incidents at sea Using Big Data Technique (빅데이터 기법을 활용한 항해 중 준해양사고 발생원인 분석에 관한 연구)

  • Kang, Suk-Young;Kim, Ki-Sun;Kim, Hong-Beom;Rho, Beom-Seok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.408-414
    • /
    • 2018
  • Various studies have been conducted to reduce marine accidents. However, research on marine incidents is only marginal. There are many reports of marine incidents, but the main content of existing studies has been qualitative, which makes quantitative analysis difficult. However, quantitative analysis of marine accidents is necessary to reduce marine incidents. The purpose of this paper is to analyze marine incident data quantitatively by applying big data techniques to predict marine incident trends and reduce marine accident. To accomplish this, about 10,000 marine incident reports were prepared in a unified format through pre-processing. Using this preprocessed data, we first derived major keywords for the Marine incidents at sea using text mining techniques. Secondly, time series and cluster analysis were applied to major keywords. Trends for possible marine incidents were predicted. The results confirmed that it is possible to use quantified data and statistical analysis to address this topic. Also, we have confirmed that it is possible to provide information on preventive measures by grasping objective tendencies for marine incidents that may occur in the future through big data techniques.

Estimation of Marine Traffic Volume Considering Ship Speed (선박의 속력을 고려한 해상교통량 평가에 관한 연구)

  • Kwon, Yu-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.381-388
    • /
    • 2018
  • This study proposes marine traffic volume estimation method considering ship speed, a factor excluded from the existing method. Ten days of GICOMS marine traffic data from Pyeongtaek and Dangjin ports was applied to this study. As a result, converted traffic volume with the proposed estimation method showed an increase of 4.41 (${\pm}0.99$) times or decrease of 0.59 (${\pm}0.04$) at most, compared with the existing estimation method. Average marine traffic congestion for each time applying the proposed estimation method showed an increase of 1.43 (${\pm}0.10$) compared with the existing estimation method. The maximum marine traffic congestion for each time was 1.62 (${\pm}0.34$) times higher compared with the existing estimation method. Marine traffic peak time, defined as the highest point of marine traffic congestion, was evaluated to be different from that of the existing method because of distribution of vessel speed. In conclusion, considering ship speed is necessary when estimating marine traffic volume to produce a practical estimate of marine traffic capacity.

A Study on the Design of the Grid-Cell Assessment System for the Optimal Location of Offshore Wind Farms (해상풍력발전단지의 최적 위치 선정을 위한 Grid-cell 평가 시스템 개념 설계)

  • Lee, Bo-Kyeong;Cho, Ik-Soon;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.848-857
    • /
    • 2018
  • Recently, around the world, active development of new renewable energy sources including solar power, waves, and fuel cells, etc. has taken place. Particularly, floating offshore wind farms have been developed for saving costs through large scale production, using high-quality wind power and minimizing noise damage in the ocean area. The development of floating wind farms requires an evaluation of the Maritime Safety Audit Scheme under the Maritime Safety Act in Korea. Floating wind farms shall be assessed by applying the line and area concept for systematic development, management and utilization of specified sea water. The development of appropriate evaluation methods and standards is also required. In this study, proper standards for marine traffic surveys and assessments were established and a systemic treatment was studied for assessing marine spatial area. First, a marine traffic data collector using AIS or radar was designed to conduct marine traffic surveys. In addition, assessment methods were proposed such as historical tracks, traffic density and marine traffic pattern analysis applying the line and area concept. Marine traffic density can be evaluated by spatial and temporal means, with an adjusted grid-cell scale. Marine traffic pattern analysis was proposed for assessing ship movement patterns for transit or work in sea areas. Finally, conceptual design of a Marine Traffic and Safety Assessment Solution (MaTSAS) was competed that can be analyzed automatically to collect and assess the marine traffic data. It could be possible to minimize inaccurate estimation due to human errors such as data omission or misprints through automated and systematic collection, analysis and retrieval of marine traffic data. This study could provides reliable assessment results, reflecting the line and area concept, according to sea area usage.

A Study on Minimum Number of Ship-handling Simulation Required for Evaluating Vessel's Proximity Measure

  • Jeong, Tae-Gweon;Pan, Bao-Feng
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.689-694
    • /
    • 2014
  • The Korean government has introduced and enforced maritime traffic safety assessment to secure traffic safety since 2010. The maritime traffic safety assessment is needed by law to design a new port or modify an existing one. According to Korea Maritime Safety Act, in the assessment the propriety of marine traffic system consists of the safety of channel transit and berthing/unberthing maneuver, safety of mooring, and safety of marine traffic flow. The safety of channel transit and berthing/unberthing maneuver can be evaluated only by ship-handling simulation. The ship-handling simulation is carried out by sea pilots working with the port concerned. The vessel's proximity measure is an important factor to evaluate traffic safety. The proximity measure is composed of vessel's closest distance to channel boundary and probability of grounding/collision. What is more, the probability of grounding becomes important. According to central limit theorem, a sample has a normal distribution on condition that its size is more than 30. However, more than 30 simulation runs bring about the increase of assessment period and difficulty of employing sea pilots. Therefore this paper is to find out minimum sample size for evaluating vessel's proximity. First sample sets of size of 3, 5, 7, 9 etc. are selected randomly on the basis of normal distribution. And then KS test for goodness of fit and t-test for confidence interval are applied to each sample set. Finally this paper decides the minimum sample size. As a result this paper suggests the minimum sample size of 5, that is, the simulation of more than five times.